Advertisement

Molecular Structure and Biological Activity of Hypoxic Cell Radiosensitizers and Hypoxic-Specific Cytotoxins

  • Peter Wardman
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 43)

Abstract

It has been suggested (1) that if we were to seek an anticancer drug by randomly testing compounds, some 400 million compounds might need to be examined before a successful drug were found. This paper outlines briefly some of the methods which should prove useful in optimising the chemical properties of a series of compounds in which some activity has been demonstrated, thus reducing the burden to perhaps one-millionth of that which would otherwise be necessary. We shall also comment on the problem of identifying potential ‘new-lead’ compounds, where the basis for potential activity is not well understood, as distinct from optimising the properties of an already active series.

Keywords

Partition Coefficient Nitro Compound Hypoxic Cell Radiation Sensitizer Pulse Radiolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Spinks, The changing role of chemistry in product innovation, Chem. Ind. (London) 885 (1973).Google Scholar
  2. 2.
    P. Wardman, E. D. Clarke, I. R. Flockhart, and R. G. Wallace, The rationale for the development of improved hypoxic cell radiosensitizers, Br. J. Cancer 37:1 (1978).CrossRefGoogle Scholar
  3. 3.
    P. Wardman, The chemical basis for the development of hypoxic cell radiosensitizers, in: “Radiosensitizers of Hypoxic Cells”, A. Breccia, C. Rimondi, and G. E. Adams, eds., Elsevier, Amsterdam (1979).Google Scholar
  4. 4.
    G. E. Adams, E. D. Clarke, I. R. Flockhart, R. S. Jacobs, D. S. Sehmi, I. J. Stratford, P. Wardman, M. E. Watts, J. Parrick, R. G. Wallace, and C. E. Smithen, Structure-activity relationships in the development of hypoxic cell radiosensitizers. I. Sensitization efficiency, Int. J. Radiat. Biol. 35:133 (1979).CrossRefGoogle Scholar
  5. 5.
    G. E. Adams, E. D. Clarke, P. Gray, R. S. Jacobs, I. J. Stratford, P. Wardman, M. E. Watts, J. Parrick, R. G. Wallace, and C. E. Smithen, Structure-activity relationships in the development of hypoxic cell radiosensitizers. II. Cytotoxicity and therapeutic ratio, Int. J. Radiat. Biol., 35:151 (1979).CrossRefGoogle Scholar
  6. 6.
    G. E. Adams, I. Ahmed, E. D. Clarke, P. O’Neill, J. Parrick, I. J. Stratford, R. G. Wallace, P. Wardman, and M. E. Watts, Structure-activity relationships in the development of hypoxic cell radiosensitizers. III. Effect of basic sub-stituents in nitroimidazole sidechains, Int. J. Radiat. Biol., in the press (1980).Google Scholar
  7. 7.
    R. F. Anderson, and K. B. Patel, Effect of lipophilicity of nitroimidazoles on radiosensitization of hypoxic bacterial cells in vitro, Br. J. Cancer 39:705 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    G. E. Adams, I. J. Stratford, R. G. Wallace, P. Wardman and M. E. Watts, The toxicity of nitro compounds towards hypoxic mammalian cells in vitro: dependence on reduction potential, J. Natl. Cancer Inst. 64:555 (1980).PubMedGoogle Scholar
  9. 9.
    G. E. Adams, and M. S. Cooke, Electron-affinic sensitization. I. A structural basis for chemical radiosensitizers in bacteria, Int. J. Radiat. Biol. 15:457 (1969).CrossRefGoogle Scholar
  10. 10.
    J. A. Raleigh, J. D. Chapman, J. Borsa, W. Kremers, and A. P. Reuvers, Radiosensitization of mammalian cells by p-nitroacetophenone. III. Effectiveness of nitrobenzene analogues, Int. J. Radiat. Biol. 23:377 (1973).CrossRefGoogle Scholar
  11. 11.
    M. Simic, and E. L. Powers, Correlation of the efficiencies of some radiation sensitizers and their redox potentials, Int. J. Radiat. Biol. 26:87 (1974).CrossRefGoogle Scholar
  12. 12.
    N. R. Draper, and H. Smith, “Applied Regression Analysis”, Wiley, New York (1966).Google Scholar
  13. 13.
    C. Hansch, Recent advances in biochemical QSAR, in: “Correlation Analysis in Chemistry. Recent Advances”, N. B. Chapman and J. Shorter eds., Plenum, New York (1978).Google Scholar
  14. 14.
    J. A. Keverling Guisman, ed., “Biological Activity and Chemical Structure,” Elsevier, Amsterdam (1977).Google Scholar
  15. 15.
    C. Hansch, QSAR in cancer chemotherapy, Il. Farmaco — Ed. Sc. 34:89 (1979).Google Scholar
  16. 16.
    P. Wardman, The use of nitroarometic compounds as hypoxic cell radiosensitizers, Curr. Top. Radiat. Res. Quart. 11:347 (1977).Google Scholar
  17. 17.
    P. Wardman, Application of pulse radiolysis methods to study the reactions and structure of biomolecules, Rep. Prog. Phys. 41:259 (1978).CrossRefGoogle Scholar
  18. 18.
    S. Arai, and L. M. Dorfman, Rate constants and equilibrium constants for electron transfer reactions of aromatic molecules in solution, Adv. Chem. Ser. 82:378 (1968).CrossRefGoogle Scholar
  19. 19.
    K. B. Patel, and R. L. Willson, Semiquinone free radicals and oxygen. Pulse radiolysis study of one electron transfer equilibria, J.C.S. Faraday I 69:814 (1973).CrossRefGoogle Scholar
  20. 20.
    D. Meisel, and P. Neta, One-electron redox potentials of nitro compounds and radiosensitizers. Correlation with spin densities of their radical anions, J. Amer. Chem. Soc. 97: 5198 (1975).CrossRefGoogle Scholar
  21. 21.
    P. Wardman, and E. D. Clarke, One-electron reduction potentials of substituted nitroimidazoles measured by pulse radiolysis, J.C.S. Faraday I 72:1377 (1976).CrossRefGoogle Scholar
  22. 22.
    P. Wardman, E. D. Clarke, R. S. Jacobs, A. Minchinton, M. R. L. Stratford, M. E. Watts, M. Woodcock, M. Moazzam, J. Parrick, R. G. Wallace and C. E. Smithen, The development of hypoxic cell radiosensitizers: the second and third generations, in: “Radiation Sensitizers: Their Use in the Clinical Management of Cancer,” L. W. Brady ed., Masson, New York (1980).Google Scholar
  23. 23.
    J. C. Asquith, M. E. Watts, K. B. Patel, C. E. Smithen, and G. E. Adams, Electron-affinic sensitization. V. Radiosensitization of hypoxic bacteria and mammalian cells in vitro by some nitroimidazoles and nitropyrazoles, Radiat. Res. 60:108 (1974).PubMedCrossRefGoogle Scholar
  24. 24.
    I.V. Khudyakov, V. B. Kuzhkov, and V. A. Kuz’min, Redox potentials of radical anions of nitrofuran derivatives, Doklady Phys. Chem. 246:424 (1979) (Engl, transl. of Dokl. Acad. Nauk, SSSR, 246:397 (1979)).Google Scholar
  25. 25.
    A. Breccia, G. Berrilli, and S. Roffia, Chemical radiosensitization of hypoxic cells and redox potentials. Correlation of voltammetric results with pulse radiolysis data of nitro compounds and radiosensitizers, Int. J. Radiat. Biol. 36: 89 (1979).CrossRefGoogle Scholar
  26. 26.
    P. L. Olive, Inhibition of DNA synthesis by nitroheterocycles. I. Correlation with half-wave reduction potential, Br. J. Cancer 40:89 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    P. L. Olive, Correlation between metabolic reduction rates and electron affinity of nitroheterocycles, Cancer Res. 39: 4512 (1979).PubMedGoogle Scholar
  28. 28.
    P. L. Olive, Mechanisms of the in vitro toxicity of nitroheterocycles, including Flagyl and metronidazole, In: “Radiation Sensitizers: Their Use in the Clinical Management of Cancer”, L. W. Brady, ed., Masson, New York (1980).Google Scholar
  29. 29.
    C. Hansen, and A. J. Leo, “Substituent Constants for Correlation Analysis in Chemistry and Biology,” Wiley, New York (1979).Google Scholar
  30. 30.
    A. Leo, C. Hansch, and D. Elkins, Partition coefficients and their uses, Chem. Revs. 71:525 (1971).CrossRefGoogle Scholar
  31. 31.
    G. E. Adams, I. R. Flockhart, C. E. Smithen, I. J. Stratford, P. Wardman, and M. E. Watts, Electron-affinic sensitization. VII. A correlation between structures, one-electron reduction potentials and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers, Radiat. Res. 67:9 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    M. E. Watts, R. F. Anderson, R. S. Jacobs, K. B. Patel, P. Wardman, M. Woodcock, C. E. Smithen, M. Moazzam, J. Parrick, and R. G. Wallace, Evaluation of novel hypoxic cell radiosensitizers in vitro: the value of studies in single-cell systems, in: “Radiation Sensitizers: Their Use in the Clinical Management of Cancer,” L. W. Brady, ed., Masson, New York (1980).Google Scholar
  33. 33.
    B. N. La Du, H. G. Mandel, and E. L. Way, “Fundamentals of Drug Metabolism and Drug Disposition”, Williams and Wilkins, Baltimore (1971).Google Scholar
  34. 34.
    Y. C. Martin, “Quantitative Drug Design. A Critical Introduction”, Dekker, New York (1978).Google Scholar
  35. 35.
    G. G. Gallo, C. R. Pasqualucci, P. Radaeilli, and G. C. Lancini, The ionization constants of some imidazoles, J. Org. Chem. 29:862 (1964).CrossRefGoogle Scholar
  36. 36.
    C. E. Smithen, E. D. Clarke, J. A. Dale, R. S. Jacobs, P. Wardman, M. E. Watts and M. Woodcock, Novel (nitro-1-imidazolyl) alkanolamines as potential radiosensitizers with improved therapeutic properties, in: “Radiation Sensitizers: Their Use in the Clinical Management of Cancer,” L. W. Brady, ed., Masson, New York (1980).Google Scholar
  37. 37.
    B. Cavalleri, G. Volpe, and R. Pallanza, 1-Alkyl-2-nitroimidazol-5-yl derivatives, I. Arzneim.-Forsch. (Drug Res.) 25:148 (1975).Google Scholar
  38. 38.
    J. W. Bridges, and A. G. E. Wilson, Drug-serum protein interactions and their biological significance, in: “Progress in Drug Metabolism, vol. 1”, J. W. Bridges and L. F. Chausseaud, eds., Wiley, New York (1976).Google Scholar
  39. 39.
    J. M. Vandenbilt, C. Hansen, and C. Church, Binding of apolar molecules by serum albumin, J. Med. Chem. 15:787 (1972).CrossRefGoogle Scholar
  40. 40.
    D. R. Sanvordeker, Y. W. Chein, T. K. Lin, and H. J. Lambert, Binding of metronidazole and its derivatives to plasma proteins: an assessment of drug binding phenomenon, J. Pharm. Sci. 64:1797 (1975).PubMedCrossRefGoogle Scholar
  41. 41.
    L. P. Hammett, “Physical Organic Chemistry. Reaction Rates, Equilibria, and Mechanisms”, 2nd edn., McGraw-Hill Kogakusha, Tokyo (1970).Google Scholar
  42. 42.
    T. Fujita, J. Iwasa, and C. Hansch, A new substituent constant, TC, derived from partition coefficients, J. Amer. Chem. Soc. 86:5175 (1964).CrossRefGoogle Scholar
  43. 43.
    E. D. Clarke, and P. Wardman, unpublished measurements.Google Scholar
  44. 44.
    P. Neta, M. G. Simic, and M. Z. Hoffman, Pulse radiolysis and electron spin resonance studies of nitroarometic radical anions. Optical absorption spectra, kinetics and one-electron redox potentials, J. Phys. Chem. 80:2018 (1976).CrossRefGoogle Scholar
  45. 45.
    L. Sjöberg and T. W. Erikson, Nitrobenzenes: a comparison of pulse radiolytically determined one-electron reduction potentials and calculated electron affinities, J.C.S. Faraday I 76:1402 (1980).CrossRefGoogle Scholar
  46. 46.
    R. F. Rekker, “The Hydrophobic Fragmental Constant”, Elsevier, New York (1977).Google Scholar
  47. 47.
    W. M. Clark, “Oxidation-Reduction Potentials of Organic Systems”, Williams and Wilkins, Baltimore (1960).Google Scholar
  48. 48.
    P. Wardman, Oxygen-like radiosensitizing drugs: the importance of free-energy relationships, in: “Proc. Int. Conf. on Oxygen and Oxy-Radicals in Chemistry and Biology,” E. L. Powers and M. A. J. Rodgers, eds., Academic Press, New York (1981).Google Scholar
  49. 49.
    J. E. Biaglow, and R. E. Durand, The effects of nitrobenzene derivatives on oxygen utilization and radiation response of an in vitro tumour model, Radiat. Res. 65:529 (1976).PubMedCrossRefGoogle Scholar
  50. 50.
    R. L. Willson, W. A. Cramp, and R. M. J. Ings, Metronidazole (“Flagyl”): mechanisms of radiosensitization, Int. J. Radiat. Biol. 26:557 (1974).CrossRefGoogle Scholar
  51. 51.
    G. W. Snedecor, and W. G. Cochrane, “Statistical Methods”, 6th edn., Iowa State Univ. Press, Ames (1967).Google Scholar
  52. 52.
    W. P. Purcell, G. E. Bass, and J. M. Clayton, “Strategy of Drug Design: A Guide to Biological Activity”, Wiley, New York (1973).Google Scholar
  53. 53.
    J. E. Overall, and C. J. Klett, “Applied Multivariate Analysis”, McGraw-Hill, New York (1972).Google Scholar
  54. 54.
    A. J. Stuper, W. E. Brügger, and P. C. Jurs, “Computer Assisted Studies of Chemical Structure and Biological Function”, Wiley, New York (1979).Google Scholar
  55. 55.
    W. H. Davies, Jr., and W. A. Pryor, Measures of Goodness of Fit in Linear Free Energy Relationships, J. Chem. Educ. 53:285 (1976).CrossRefGoogle Scholar
  56. 56.
    R. F. Anderson, and K. B. Patel, unpublished data.Google Scholar
  57. 57.
    H. Kubinyi, Lipophilicity and biological activity, Arzneim.- Forsch.(Drug Res.) 29:1067 (1979).Google Scholar
  58. 58.
    R. M. Hyde, Relationships between the biological and physicochemical properties of series of compounds, J. Med. Chem. 18:231 (1975).PubMedCrossRefGoogle Scholar
  59. 59.
    G. F. Whitmore, S. Gulyas, and A. J. Varghese, Studies on the radiation-sensitizing action of NDPP, a sensitizer of hypoxic cells, Radiat. Res. 61:325 (1975).PubMedCrossRefGoogle Scholar
  60. 60.
    S. Dische, J. F. Fowler, M. I. Saunders, M. R. L. Stratford, P. Anderson, A. I. Minchinton, and M. E. Lee, A drug for improved radiosensitization in radiotherapy, Br. J. Cancer 42:in the press (1980).Google Scholar
  61. 61.
    J. M. Brown, and P. Workman, Partition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole, Radiat. Res. 82:171 (1980).PubMedCrossRefGoogle Scholar
  62. 62.
    B. Chance, and M. Montal, Ion-translocation in energy-conserving membrane systems, Curr. Topics Membranes and Transport 2:99 (1971).CrossRefGoogle Scholar
  63. 63.
    M. R. L. Stratford, A. I. Minchinton, F. A. Stewart, and V. S. Randhawa, Pharmacokinetic studies on some novel (2-nitro-1-imidazolyl)propanolamine radiosensitizers, in: “Proc. Conf. on Nitroimidazoles, Cesenatico, Italy”, in the press (1980).Google Scholar
  64. 64.
    G. E. Adams, I. Ahmed, E. M. Fielden, P. O’Neill, and I. J. Stratford, The development of some nitroimidazoles as hypoxic cell sensitizers, Cancer Clin. Trials 3:37 (1980).PubMedGoogle Scholar
  65. 65.
    M. Charton, Electrical effects of ortho substituents in imidazoles and benzimidazoles, J. Org. Chem. 30:3346 (1965).CrossRefGoogle Scholar
  66. 66.
    E. D. Clarke, and P. Wardman, Are ortho-substituted 4-nitro-imidazoles a new generation of radiation-induced arylating agents? Int. J. Radiat. Biol. 37:463 (1980).CrossRefGoogle Scholar
  67. 67.
    G. E. Adams, J. C. Asquith, and R. L. Willson, in: “British Empire Cancer Campaign for Research, 47th Annual Report”, pp.167, 168 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Peter Wardman
    • 1
  1. 1.Cancer Research Campaign Gray LaboratoryMount Vernon HospitalNorthwood, MiddlesexEngland

Personalised recommendations