Subendocardial Ischemia in the Absence of Coronary Artery Disease

  • J. I. E. Hoffman
  • R. W. Baer
  • P. N. Uhlig
  • G. J. Vlahakes
  • J. D. Bristow
  • L. M. Messina
  • F. L. Hanley
  • E. D. Verrier
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 62)


When people with coronary atherosclerosis develop angina pectoris or do strenuous exercise, their electrocardiograms frequently show in the left precordial leads ST segment depression that is generally ascribed to subendocardial ischemia. Similar electrocardiographic changes have been seen in patients with severe aortic stenosis or incompetence, or severe right ventricular hypertension, even when the coronary arteries are normal. In 1955 Marquis and Logan showed that patients with congenital aortic stenosis and electrocardiographic signs of subendocardial ischemia had subendocardial necrosis and fibrosis in the left ventricle, and suggested that the damage was ischemic in origin. Their findings have been confirmed many times since then (Moller, Nakeb and Edwards, 1966; Schwarz, Flameng, Schaper et al., 1978; Cheitlin, Robinowitz, McAllister et al., 1980).


Coronary Sinus Coronary Flow Tissue Pressure Superficial Muscle Collapsible Tube 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARCHIE, J.P. Jr. (1978): Minimum left ventricular coronary vascular resistance in dogs. J. Surg. Res. 25: 25–25.Google Scholar
  2. ARTS, M.G.J. (1978): A mathematical model of the dynamics of the left ventricle and the coronary circulation. Ph.D. Thesis, Rijksuniversiteit Limburg.Google Scholar
  3. BACHE, R.J. and SCHWARTZ, J.S. (1982): Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation 65: 928–935.CrossRefGoogle Scholar
  4. BAIRD, R.J., DUTKA, F., OKUMOIR, M., de la ROCHA, A., GOLDBACH, M.M., HILL, T.J. and MACGREGOR, D.C. (1975): Surgical aspects of regional myocardial blood flow and myocardial pressure. J. Thorac. Cardiovasc. Surg. 69: 17–29.Google Scholar
  5. BAIRD, R.J., GOLDBACH, M.M. and de la ROCHA, A. (1972): Intramyocardial pressure. The persistence of its transmural gradient in the empty heart and its relationship to myocardial oxygen consumption. J. Thorac. Cardiovasc. Surg. 64: 635–646.Google Scholar
  6. BAIRD, R.J., MANKTELOW, R.T., SHAH, P.A. and AMELI, F.M. (1970): Intramyocardial pressure: A study of its regional variations and its relationship to intraventricular pressure. J. Thorac. Cardiovasc. Surg. 59: 810–823.Google Scholar
  7. BANISTER, J., and TORRANCE, R.W. (1961): The effects of the tracheal pressure upon flow:pressure relations in the vascular bed of isolated lungs. Quart. J. Physiol. 45: 352–267.Google Scholar
  8. BELLAMY, R.F. (1978): Diastolic coronary pressure-flow relations in the dog. Circ. Res. 43: 92–101.Google Scholar
  9. BELLAMY, R.F., LOWENSOHN, H.S., EHRLICH, W., and BAER, R.W. (1980): Effect of coronary sinus occlusion on coronary pressure-flow relations. Am. J. Physiol. 239: H57–H64.Google Scholar
  10. BORG, T.K., and CAULFIELD, J.B. (1981): The collegen matrix of the heart. Fed. Proc. 40: 2037–2041.Google Scholar
  11. BRANDI, G., and MCGREGOR, M. (1969): Intramural pressure in the left ventricle of the dog. Cardiovasc. Res. 3: 472–475.CrossRefGoogle Scholar
  12. BROWER, R.W., and NOORDERGRAAF, A. (1973): Pressure-flow characteristics in collapsible tubes: A reconciliation of seemingly contradictory results. Ann. Biomed. Eng. 1: 333–355.CrossRefGoogle Scholar
  13. BUCKBERG, G.D., FIXLER, D.E., ARCHIE, J.P., and HOFFMAN, J.I.E. (1972): Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ. Res. 30: 67–81.Google Scholar
  14. BUCKBERG, G.D., and HOTTENROTT, C.E. (1975): Ventricular fibrillation. Its effect on myocardial flow, distribution and performance. Ann. Thorac. Surg. 20: 76–85.CrossRefGoogle Scholar
  15. BUCKBERG, G.D., and ROSS, G. (1973): Effects of isoprenaline on coronary blood flow: Its distribution and myocardial performance. Cardiovasc. Res. 7: 429–437.CrossRefGoogle Scholar
  16. BUCKBERG, G.D., TOWERS, B., PAGLIA, D.B., MULDER, D.G., and MALONEY, J.V. (1972): Subendocardial ischemia after cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 64: 669–684.Google Scholar
  17. CHEITLIN, M.D., ROBINOWITZ, M., MCALLISTER, H., HOFFMAN, J.I.E., BHARATI, S., and LEV, M. (1980): The distribution of fibrosis in the left ventricle in congenital aortic stenosis and coarctation of the aorta. Circulation 62: 823–830.Google Scholar
  18. CHILIAN, W.M. and MARCUS, M.L. (1982): Phasic coronary blood flow velocity in intramural and epicardial coronary arteries. Circ. Res. 50: 775–781.Google Scholar
  19. COLAPINTO, N.D. and SILVER, M.D. (1971): Prosthetic heart valve replacement: Causes of early post-operative death. J. Thorac. Cardiovasc. Surg. 61: 938–944.Google Scholar
  20. CONRAD, W.A. (1969): Pressure-flow relations in collapsible tubes. IEEE Trans. Biomed. Eng. 16: 284–295.CrossRefGoogle Scholar
  21. CONSIGNY, P.M., VERRIER, E.D., ALLARD, J.R. and HOFFMAN, J.I.E. (1979): Transmural distribution of diastolic waterfall pressure in the left ventricle. Circulation 60: Supp II, 259 (abstract).Google Scholar
  22. DOUGLAS, J.E. and GREENFIELD, J.C. Jr. (1970): Epicardial coronary artery compliance in the dog. Circ. Res. 27: 921–929.Google Scholar
  23. DOWNEY, J.M. and KIRK, E.S. (1974): Distribution of the coronary blood flow across the canine heart wall during systole. Circ. Res. 34: 251–257.Google Scholar
  24. DOWNEY, J.M. and KIRK, E.S. (1975): Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ. Res. 36: 753–760.Google Scholar
  25. DUNN, R.B. and GRIGGS, D.M. Jr. (1975): Transmural gradients in ventricular tissue metabolites produced by stopping coronary flow in the dog. Circ. Res. 37: 438–445.Google Scholar
  26. DUOMARCO, J.L. and RIMINI, R. (1954): Energy and hydraulic gradient along systemic veins. Am. J. Physiol. 178: 215–219.Google Scholar
  27. EARLY, G.B., DEWEY, R.C., PIEPER, H.W. and HUNT, W.E. (1974): Dynamic pressure-flow relationship of brain blood flow in the monkey. J. Neurosurg. 41: 590–596.CrossRefGoogle Scholar
  28. ERLICH, W., BAER, R.W., BELLAMY R.F., and RANDAZZO, R. (1960): Instantaneous femoral artery pressure-flow relations in supine anesthetized dogs and the effect of unilateral elevation of femoral venous pressure. Circ. Res. 47: 88–98.Google Scholar
  29. ELLIS, A., and KLOCKE, F.J. (1980): Effects of preload on the transmural distribution of perfusion and pressure-flow relationships in the canine coronary vascular bed. Circ. Res. 46: 68–77.Google Scholar
  30. ENG, C., JENTZER, J.H., and KIRK, E.S. (1982): The effects of the coronary capacitance on the interpretation of diastolic pressure-flow relationships. Circ. Res. 50: 334–341.Google Scholar
  31. ESTERLY, J.R. and OPPENHEIMER, E.H. (1967): Some aspects of cardiac pathology in infancy and childhood. IV. Myocardial and coronary lesions in cardiac malformations. Pediatrics 39: 896–903.Google Scholar
  32. FERRANS, V.J., HIBB, R.G., BLACK, W.C. and WEILBAECHER, D.G. (1964): Isoproterenol-induced myocardial necrosis. A histochemical and electron microscopic study. Am. Heart. J. 68: 71–90.CrossRefGoogle Scholar
  33. FRANCIOSI, R. and BLANC, W.A. (1968): Myocardial infarcts in infants and children. I. A necropsy study in congenital heart disease. J. Pediatr. 73: 309–319.CrossRefGoogle Scholar
  34. FRY, D.L., THOMAS, L.J., and GREENFIELD, J.C. Jr. (1980): Flow in Collapsible Tubes. In Basic Hemodynamics and its Role in Disease Processes, edited by Patel, D.J., Vaishnav, R.M. and Atabek, H.B., Baltimore, University Park Press, pp 407–424.Google Scholar
  35. GHIDONI, J.J., LIOTTA, D. and THOMAS, H. (1969): Massive subendocardial damage accompanying prolonged ventricular fibrillation. Am. J. Pathol. 56: 15–30.Google Scholar
  36. GOW, B.S. and HADFIELD, C.D. (1979): The elasticity of canine and human coronary arteries with reference to postmortem changes. Circ. Res. 45: 588–594.Google Scholar
  37. GREENHOUT, J.H. and REICHENBACH, D.D. (1969): Cardiac injury and subarachnoid hemorrhage. J. Neurosurg. 30: 521–531.CrossRefGoogle Scholar
  38. GREGG, D.E. and ECKSTEIN, R.W. (1941): Measurements of intramyocardial pressure. Am. J. Physiol. 132: 781–790.Google Scholar
  39. GRIGGS, D.M. and NAKAMÜRA, Y. (1968): Effects of coronary constriction on myocardial distribution of iodoantipyrine-I131. Am. J. Physiol. 215: 1082–1088.Google Scholar
  40. HAFT, J.I. (1974): Cardiovascular injury induced by sympathetic catecholamines. Prog. Cardiovasc. Dis. 17: 73–86.CrossRefGoogle Scholar
  41. HEETHAAR, P.M., PAO, Y.C. and RITMAN, E.L. (1977): Computer aspects of three-dimensional finite element analysis of stresses and strains in the intact heart. Comput. Biomed. Res. 10: 271–285.CrossRefGoogle Scholar
  42. HESS, D.S. and BACHE, R.J. (1976): Transmural distribution of myocardial blood flow during systole in the awake dog. Circ. Res. 38: 5–15.Google Scholar
  43. HOFFMAN, J.I.E. (1979): The effects of intramyocardial forces on the distribution of intramyocardial blood flow. J. Biomed. Eng. 1: 33–40.CrossRefGoogle Scholar
  44. HOFFMAN, J.I.E. and BUCKBERG, G.D. (1976): Transmural variations in myocardial perfusion. In Progress in Cardiology, edited by Yu, P. and Goodwin, J.F., Lea and Febiger, Philadelphia, pp 37–89.Google Scholar
  45. HOLT, J.P. (1941): The collapse factor in the measurement of venous pressure. Am. J. Physiol. 134: 292–299.Google Scholar
  46. HOLT, J.P. (1966): Flow through collapsible tubes and through in situ veins. IEEE Trans. Biomed. Eng. 16: 274–283.CrossRefGoogle Scholar
  47. HOTTENROTT, C.E., TOWERS, B., KURKJI, H.J., MALONEY, J.V., and BUCKBERG, G.D. (1973): The hazard of ventricular fibrillation in hypertrophied ventricles during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 66: 742–753.Google Scholar
  48. IYENGAR, S.R.K., RAMCHAND, M.B., CHARRETTE, E.J.P. and LYNN, R.B. (1972): An experimental study of subendocardial hemorrhagic necrosis after anoxic cardiac arrest. Ann. Thorac. Surg. 13: 214–224.CrossRefGoogle Scholar
  49. KIRKEEIDE, R., PUSCHMANN, S., and SCHAPER, W. (1981): Diastolic coronary pressure-flow relationships investigated by induced long-wave pressure oscillations. Basic. Res. Cardiol. 76: 564–569.CrossRefGoogle Scholar
  50. KJEKSHÜS, J.K. (1973): Mechanism for flow distribution in normal and ischemic myocardium during increased ventricular preload in the dog. Circ. Res. 33: 489–499.Google Scholar
  51. KLOCKE, F.J., WEINSTEIN, I.R., KLOCKE, J.F., ELLIS, A.K., KRAUS, D.R., MATES, R.E., CANTY, J.M., ANBAR, R.D., ROMANOWSKI, R.R., WALLMEYER, K.W. and ECHT, M.P. (1981): Zero-flow pressures and pressure-flow relationships during single long diastoles in the canine coronary bed before and during maximal vasodilatation. Limited influence of capacitive effects. J. Clin. Invest. 68: 970–980.CrossRefGoogle Scholar
  52. KNOWLTON, F.P., and STARLING, E.H. (1912): The influence of variations in temperature and blood pressure on the performance of the isolated mammalian heart. J. Physiol. (Lond). 44: 206–219.Google Scholar
  53. KOSKELO, P., PUNSAR, S. and SIPILA, W. (1964): Subendocardial haemorrhage and E.C.G. changes in intracranial bleeding. Br. Med. J. 1: 1479–1486.CrossRefGoogle Scholar
  54. L’ABBATE, A., MARZILLI, M., BALLESTRA, A.M. and CAMICI, P. (1978): Myocardial contraction: An additional determinant of transmural flow distribution. In Primary and Secondary Angina Pectoris, edited by Maseri, A., Klassen, G.A. and Lesch, M., Grune and Stratton, Inc., New York, pp 21–28.Google Scholar
  55. L’ABBATE, A., MARZILLI, M., BALLESTRA, A.M., CAMICI, P., TRIVELLA, M.G., PELOSI, G. and KLASSEN, G.A. (1980): Opposite transmural gradients of coronary resistance and extravascular pressure in the working dog’s heart. Cardiovasc. Res. 14: 21–29.CrossRefGoogle Scholar
  56. LUNDSGAARD-HANSEN, P., MEYER, C. and RIEDWYL, H. (1967): Transmural gradients of glycolytic enzyme activities in left ventricular myocardium. Arch. Ges. Physiol. 297: 89–106.CrossRefGoogle Scholar
  57. LYON, C.K., SCOTT, J.B., WANG, C.Y. (1980): Flow through collapsible tubes at low Reynolds numbers. Circ. Res. 47: 68–73.Google Scholar
  58. MARQUIS, R.M. and LOGAN, A. (1955): Congenital aortic stenosis and its surgical treatment. Br. Heart. J. 17: 373–390.CrossRefGoogle Scholar
  59. MARZILLI, M., GOLDSTEIN, S., SABBAH, H.N., LEE, T. AND STEIN, P.D. (1979): Modulating effect of regional myocardial performance on local myocardial perfusion in the dog. Circ. Res. 45: 634–640.Google Scholar
  60. MASTER, A.M., DACK, S., HORN, H., FREEDMAN, B.I. and FIELD, L.E. (1950): Acute coronary insufficiency due to acute hemorrhage: An analysis of one hundred and three cases. Circulation. 1: 1302–1317.Google Scholar
  61. MINAMIDATE, A., TAKANO, S., HASHIKAWA, T. and ABIKO, Y. (1973): Transmural gradient of NAD+/NADH ratio in the canine left ventricular myocardium, and effects of coronary dilators on the transmural gradient. Jap. J. Pharmacol. 23: 126–128.CrossRefGoogle Scholar
  62. MIRSKY, I. (1970): Effects of anisotropy and nonhomogeneity on left ventricular stresses in the intact heart. Bull. Math. Biophys. 32: 197–213.CrossRefGoogle Scholar
  63. MIRSKY, I. (1973): Ventricular and arterial wall stresses based on large deformation analysis. Biophys. J. 13: 1141–1159.CrossRefGoogle Scholar
  64. MOIR, T.W. (1972): Brief reviews: Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circ. Res. 30: 621–627.Google Scholar
  65. MOIR, T.W., and DEBRA, D.W. (1967): Effect of left ventricular hypertension, ischemia and vasoactive drugs on the myocardial distribution of coronary flow. Circ. Res. 21: 65–74.Google Scholar
  66. MOLLER, J.H., NAKEB, A. and EDWARDS, J.E. (1966): Infarction of the papillary muscle and mitral insufficiency associated with congenital aortic stenosis. Circulation 34: 87–91.Google Scholar
  67. MONROE, R.G., GAMBLE, W.J., LAFARGE, C.A., BENUOALID, H. and WEISUL, J. (1975): Transmural coronary venous O2 saturations in normal and isolated dog hearts. Am. J. Physiol. 228: 318–324.Google Scholar
  68. MORGENSTERN, C., HOLJES, U., ARNOLD, G. and LOCHNER, W. (1973): The influence of coronary pressure and coronary flow on intra-coronary blood volume and geometry of the left ventricle. Pfluegers Arch. 340: 101–111.CrossRefGoogle Scholar
  69. NAJAFI, H., HENSON, D., DYE, W.S., JAVID, H., HUNTER, J.A., CALLAGHAN, R., EIENSTEIN, R. and JULIEN, O.C. (1969): Left ventricular hemorrhagic necrosis. Ann. Thorac. Surg. 7: 550–561.CrossRefGoogle Scholar
  70. NAJAFI, H., LAL, R., KHALILI, M., SERRY, C., ROGERS, A. and HAKLIN, M. (1971): Left ventricular hemorrhagic necrosis. Experimental production and pathogenesis. Ann. Thorac. Surg. 12: 400–410.CrossRefGoogle Scholar
  71. PAO, Y.C., ROBB, R.A. and RITMAN, E.L. (1976): Plane-strain finite-element analysis of reconstructed diastolic left ventricular cross section. Ann. Biomed. Eng. 4: 232–249.CrossRefGoogle Scholar
  72. PERMUTT, S. and RILEY, R.L. (1963): Hemodynamics of collapsible vessels with tone: The vascular waterfall. J. Appl. Physiol. 18: 924–932.Google Scholar
  73. ROULEAU, J., BOERBOOM, L.E., SURJADHANA, A. and HOFFMAN, J.I.E. (1979): The role of autoregulation and tissue diastolic pressures in the transmural distribution of left ventricular blood flow in anesthetized dogs. Circ. Res. 45: 804–815.Google Scholar
  74. SABBAH, H.N. and STEIN, P.D. (1982): Effect of acute regional ischemia on pressure in the subepicardium and subendocardium. Am. J. Physiol. 272: H240–H244.Google Scholar
  75. SCHARF, S.M., BROMBERGER-BARNEA, B., and PERMUTT, S. (1971): Distribution of coronary venous flow. J. Appl. Physiol. 30: 647–662.Google Scholar
  76. SCHENK, E.A. and MOSS, A.J. (1966): Cardiovascular effects of sustained norepinephrine infusions. II Morphology. Circulation 18: 605–614.Google Scholar
  77. SCHWARZ, F., FLAMENG, W., SCHAPER, J., LANGEBARTELS, F., THORMANN, J., HEHRLEIN, F. and SCHLEPPER, M. (1978): Myocardial structure and function in patients with aortic valve disease and their relation to post-operative results. Am. J. Cardiol. 41: 661–669.CrossRefGoogle Scholar
  78. SEVITT, S. (1970): Reflections on some problems in the pathology of trauma. J. Trauma 10: 962–973.CrossRefGoogle Scholar
  79. SMITH, R.P. and TOMLINSON, B.E. (1954): Subendocardial haemorrhages associated with intracranial lesions. J. Pathol. Bacteriol. 68: 327–334.CrossRefGoogle Scholar
  80. SPAAN, J.A.E., BREULS, N.P.W., and LAIRD, J.D. (1981): Diastolicsystolic coronary flow difxferences are caused by intramyocardial pump action in the anesthetized dog. Circ. Res. 49: 584–593.Google Scholar
  81. STEIN, P.D., BADEER, H.S., SCHUETTE, W.H. and GLASER, J.F. (1969): Pulsatile aspects of coronary sinus blood flow in closed-chest dogs. Am. Heart. J. 78: 331–337.CrossRefGoogle Scholar
  82. STEIN, P.D., MARZILLI, M., SABBAH, H.N. and LEE, T. (1980): Systolic and diastolic pressure gradients within the left ventricular wall. Am. J. Physiol. 238: H625–H630.Google Scholar
  83. STEINHAUSEN, M., TILLMANNS, H. and THEDERAN, H. (1978): Microcirculation of the epimyocardial layer of the heart. Pfluegers Arch. 348: 9–14.Google Scholar
  84. TILLMANNS, H., STEINHAUSEN, M., LEINBERGER, H., THEDERAN, H. and KUBLER, W. 1981): Pressure measurements in the terminal vascular bed of the epimyocardium of rats and cats. Circ. Res. 49: 1202–1211.Google Scholar
  85. UHLIG, P., BAER, R., VLAHAKES, G., and HOFFMAN, J. (1981): Effect of coronary sinus pressure elevation on coronary flow. Circulation 64: Supp IV, 38 (Abstract).Google Scholar
  86. VAN DER MEER, J.J. (1972): Myocardial ischemia and epicardiectomy. An experimental study. Thesis, University of Groningen, The Netherlands.Google Scholar
  87. VERRIER, E.D., BAER, R.W., HICKEY, R.F., VLAHAKES, G.J. and HOFFMAN, J.I.E. (1980): Transmural pressure-flow relations during diastole in the canine left ventricle. Circulation 62: Supp III, 62 (Abstract).Google Scholar
  88. WEISS, H.R., NEUBAUER, J.A., LIPP, J.A. and SINHA, A.K. (1978): Quantitative determination of regional oxygen consumption in the dog heart. Circ. Res. 42: 394–401.Google Scholar
  89. WINBURY, M.D. (1977): Talk given at Workshop in Myocardial Blood Flow, Celle, Germany, October.Google Scholar
  90. WUSTEN, B., BUSS, D.D., DEIST, H., and SCHAPER, W. (1977): Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic. Res. Cardiol. 72: 636–650.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. I. E. Hoffman
    • 1
  • R. W. Baer
    • 1
  • P. N. Uhlig
    • 1
  • G. J. Vlahakes
    • 1
  • J. D. Bristow
    • 1
  • L. M. Messina
    • 1
  • F. L. Hanley
    • 1
  • E. D. Verrier
    • 1
  1. 1.Cardiovascular Research Institute and the Departments of Pediatrics, Physiology, Internal Medicine and SurgeryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations