Molecular Biology of Intercellular Matrix Macromolecules In Relation to the Cardiovascular System

  • L. Robert
  • M. Moczar
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 62)


Living tissues are composed of cells and of intercellular matrix. During phylogenesis procaryotes (bacteria) appeared first and they all must have lived as individual organisms. Only the appearance of intercellular matrix macromolecules at the level of the first pluricellular eukaryotes, the first metazoans, the sponges, enabled the association of cells in tissues, of tissues in organs and of organs in an organism. This integrative role is probably the main function of intercellular matrix without which such precise functional association of cells would be impossible. On the other hand, the “invention” of these intercellular matrix macromolecules, about 600 million years ago by the sponges enabled also the emergence of specific macroscopic forms in which these pluricellular organisms can appear. The variation of the quality and quantity of these intercellular matrix macromlecules rendered possible the phylogenetic evolution and the appearance of this multitude of forms in which pluricellular eukaryotic organisms occur. The differentiation of cells is closely related to the differentiation of the intercellular matrix.


Hyaluronic Acid Collagen Type Heparan Sulfate Elastic Fiber Dermatan Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BAILEY, A.J., and ROBINS, S.P. (1963a): Development and maturation of the crosslinks in the collagen fibres of skin. In “Frontiers of Matrix Biology” L. Robert (ed) Vol. 1, pp. 130–156, S. Karger, Basel.Google Scholar
  2. BAILEY, A.J., and ROBINS, S.P. (1973b): Intra and extra cellular changes in the biosynthesis of collagen with age. In “Mécanismes du Vieillissement Moléculaire et Callulaire” I.N.S.E.R.M. (Paris), Vol. 27, pp. 195–210.Google Scholar
  3. BALAZS, E.A. (1970): “Chemistry and Molecular Biology of the Intercellular Matrix” Academic Press, London/New York. Vol. 1, 2, 3.Google Scholar
  4. BESSOU, J.P., SERVANT, J.M., and LOISANCE, D. (1979): A biodegradable microarterial graft: scanning electron microscope studies. Int. J. Microsurg. 1: 76–95.Google Scholar
  5. BIHARI-VARGA, M., SIMON, J., and GERO, S. (1968): Identification of glycosaminoglycan- -lipoprotein complexes in the atherosclerotic intima by thermoanalytical methods. Acta Biochim. Biophys. Acad. Sci. Hung. 3: 375.Google Scholar
  6. BORNSTEIN, P., and SAGE, H. (1980): Structurally distinct collagen types. Ann. Rev. Biochem. 49: 957–1003.CrossRefGoogle Scholar
  7. BRADBEER, J., JACKSON, D.S., FLETCHER, W.S., KRIPPAEHNE, W., and DUNPHY, M. (1965): Biochemical studies on connective tissue to Dacron arterial prosthesis. J. Surg. Res. 5: 431–436.CrossRefGoogle Scholar
  8. CARPENTIER, A., LEMAIGRE, G., ROBERT, L., CARPENTIER, S., and DUBOST, CH. (1969): Biological factors affecting long-term results of valvular heterografts. J. Thoracic Cardiovasc. Surg. 58: 467–484.Google Scholar
  9. CHVAPIL, M., OWEN, J.A., and CLARK, D.S. (1977): Effect of collagen crosslinking of the rate of resorption of implanted collagen tubing in rabbits. J. Biomed. Res. 11: 297–314.CrossRefGoogle Scholar
  10. CLAIRE, M., JACOTOT, B., and ROBERT, L. (1976): Characterization of lipids associated with macromolecules of the intercellular matrix of human aorta. Connective Tissue Res. 4: .61–71.CrossRefGoogle Scholar
  11. DARDIK, H., and DARDIK, I. (1976): Successful arterial substitution with modified human umbilical vein. Ann. Surg. 183: 252–258.CrossRefGoogle Scholar
  12. GARDAIS, A., PICARD, J., and HERMELIN, B. (1973): Glycosaminoglycan (GAG) distribution in aortic wall from five species. Comp. biochem. Physiol. 44B: 507–515.Google Scholar
  13. GREILING, M., STUHLSTATZ, H.W., and GRESSNER, A. (1981): Structure, métabolisme et pathobiochimie des protêoglycannes. In “Maladies du Tissu Conjonctif” F. Delbarre, H. Kaiser and L. Robert (eds) pp. 83–100, Lab. Boehringer Ingelheim, Reims.Google Scholar
  14. HAUSCHKA, P.V., and GALLOP, P.M. (1979): Valyl-proline as an index of elastin biosynthesis. Anal. Biochem. 92: 61–66.CrossRefGoogle Scholar
  15. HORNEBECK, W., and PARTRIDGE, S.M. (1975): Conformation changes in fibrous elastin due to calcium ions. Eur. J. Biochem. 51: 73–78.CrossRefGoogle Scholar
  16. JACOTOT, B., BEAUMONT, J.L., MONNIER, G., SZIGETI, M., ROBERT, B., and ROBERT, L. (1973): Role of elastic tissue in cholesterol deposition in the arterial wall. Nutr. Metabol. 15: 46–58.CrossRefGoogle Scholar
  17. KLEINMAN, H.K., MARTIN, G.R., and FISHMAN, P.H. (1979): Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen. Proc. Nat. Acad. Sci. USA 76: 3367–3371.CrossRefGoogle Scholar
  18. KOHN, R.R. (1977): Heart and cardiovascular system. In “The Biology of Aging” C.E. Finch and L. Hayflic (eds) pp. 281–317, Van Nostrand Reinhold Company, New York.Google Scholar
  19. LABAT-ROBERT, J., MENASCHE, M., GODEAU, G., and ROBERT, L. (1980): Fibronectin in eye tissues. Proc. Int. Soc. Eye Research 1: 97.Google Scholar
  20. LABAT-ROBERT, J., BIREMBAUT, P., ROBERT, L., and ADNET, J.J. (1981): Modification of fibronectin distribution pattern in solid human tumours. Diagnostic Histopathol. 4: 299–306.Google Scholar
  21. LABAT-ROBERT, J. (1981): Structural glycoproteins of connective tissue. In “Connective Tissue Research: Chemistry, Biology and physiologyDeyl and Adam (eds) pp. 233–246, Alan R. Liss, Inc., N.Y.Google Scholar
  22. LEVY, K, and PICARD, J. (1976): Glycosaminoglycan biosynthesis in arterial wall. Hexosaminyltransferase and glucuronyltransferase in cell membranes of aortic media-intima. Eur. J. Biochem. 61: 613–619.CrossRefGoogle Scholar
  23. LOISANCE, D., MOCZAR, M., LEandRI, J., BESSOU, J.P., and DAVID, P. (1981): A new microarterial graft. Trans. Am. Soc. Artif. Intern Organs 27: 401–404.Google Scholar
  24. MOCZAR, M., ALLARD, R., ROBERT, L., LOISANCE, D., DEROUETTE, S., and CACHERA, J.P. (1976): Biosynthesis of elastin and other matrix macromolecules in veinous arterial prothesis. Path. Biol., 24: 37–41.Google Scholar
  25. MOCZAR, M., GODEAU, G., ROBERT, A.M., MOCZAR, E., LOISANCE, D., and BESSOUS, J.P. (1980): Biodegradable prosthesis from rat aorta. Pathol. Biol, 28: 517–524.Google Scholar
  26. MOCZAR, M., WEGROWSKI, J., LOISANCE, D., and DAVID, P. (1981): Biosynthetic labelling of glycosaminoglycans in subendothelial hyperplasia in heterologous vascular prosthesis. Biochem. Soc. Transactions 9: 545–546.Google Scholar
  27. OXLUND, H., andREASSEN, T.T., and VIIDIK, A. (1982): The role of collagen and elastin in the biophysical properties of aorta. Res. Com. 6th Int. Symp. on Atherosclerosis, Berlin (No 623).Google Scholar
  28. PARTRIDGE, S.M. (1970): Isolation and characterization of elastin, in “Chemistry and Molecular Biology of the Intercellular Matrix” E.A. Balazs (ed) pp. 593–616, Academic Press, London/N.Y.Google Scholar
  29. ROBERT, A.M., ROBERT, B., and ROBERT, L. (1970): Chemical and physical properties of structural glycoproteins. In “Chemistry and Molecular Biology of the Intercellular Matrix” E.A. Balazs (ed) vol. 1, pp. 237–242, Academic Press, London/N.Y.Google Scholar
  30. ROBERT, A.M., MOCZAR, M., GODEAU, G., ALLARD, R., MOCZAR, E., ROBERT, L., LOISANCE, D., DEROUETTE, S., and CACHERA, J.P. (1976): Biochemical studies on Dacron arterial prosthesis. Path. Biol. 24: 42–47.Google Scholar
  31. ROBERT, L., MOCZAR, E., and ROBERT, A.M., French DRME Patent NO EN 73–25–701.Google Scholar
  32. ROBERT, L., and ROBERT, A.M. (1980): Elastin, elastase and arteriosclerosis. In, “Frontiers of Matrix Biology” L. Robert (ed) Vol. 8, pp. 130–173, S. Karger, Basel.Google Scholar
  33. ROBERT, L., HORNEBECK, W., and ROBERT, A.M. (1982): Role of connective tissue in the arterio-atherosclerotic process. Interest of a cell-matrix directed pharmacology. In “Atherosclerosis. VI” G. Schettler and G. Schlierf (eds) Springer-Verlag, N.Y./ Heidelberg/Berlin. In print.Google Scholar
  34. ROBERT, L., and MOCZAR, M. (1981): Structural glycoproteins. In “Structural and Contractile Proteins” Vol. 82, Part A “Extracellular Matrix”, L.W. Cunningham and D.W. Frederiksen (eds) pp. 839–852, Academic Press, N.Y.Google Scholar
  35. ROBERT, L., and MOCZAR, M. (1982): Age changes of proteoglycans and glycosaminoglycans. In “Glycosaminoglycans and proteoglycans in physiological and pathological processes of body systems”, R. Varma (ed), S. Karger, Basel, in print.Google Scholar
  36. ROSENBERG, N., MARTINES, A., SAWYER, P.N., WESELOWSKI, S., POSTETHWAIT, R.W., and DILLON, M. (1966): Tanned collagen arterial prosthesis of bovine carotidis origin in man. Ann. Surg. 164: 274.Google Scholar
  37. SAGE, E.H., and GRAY, W.R. (1976): Evolution of elastin structure. In “Elastin and Elastic Tissue” L.B. Sandberg, W.R. Gray and C. Franzblau (eds) Vol. 79 Adv. Exper. Med. Biol., pp. 291–312., Plenum Press, N.Y./London.Google Scholar
  38. SRINIVASAN, S.R., YOST, K., RADHAKRISHNAMURTHY, B., DALFERES, E.R., and BERENSON, G.S. (1980): Lipoprotein-hyaluronate associations in human aorta fibrous plaque lesions. Atherosclerosis 36: 25–37.CrossRefGoogle Scholar
  39. STREHLER, B.L. (1977): “Time, Cells and aging” p. 144, Academic Press, New York.Google Scholar
  40. TANZER, M.L. (1976): Cross-linking. In “Biochemistry of Collagen”, G.N. Ramachandran and A.H. Reddi, pp. 137–162, Plenum Press, N.Y./London.Google Scholar
  41. VIIDIK, A. (1973): Rheology of skin with special reference to age-related paramaters and their possible correlation to structure. In “Frontiers of Matrix Biology” L. Robert (ed), pp. 157–189, Bol. 1, S. Karger, Basel.Google Scholar
  42. WIENER, S., WESELOWSKI, S., URIVETZKY, M., and MEILMAN, E. (1973): Bioshythesis of aortic vascular graft tissue in the pig. Res. Comm. Chem. Pathol. Pharmacol. 173–181.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • L. Robert
    • 1
  • M. Moczar
    • 1
  1. 1.Laboratoire de Biochimie du Tissu Conjonctif, GR CNRS N° 40, Fac. Méd.Inst. Rech, Univ. Maladies VasculairesCreteil CedexFrance

Personalised recommendations