Advertisement

Cardiac Protein Synthesis in Stress: Overload, Ethanol and Anoxia

  • Sidney S. Schreiber
  • Murray Oratz
  • Marcus A. Rothschild
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 62)

Abstract

Protein synthesis is of major importance in maintenance of cellular structure and viability. In the heart, proteins include those with structural, contractile and enzymatic function. Since changes in cardiac size, gross structure and function have long been known to occur with different stresses, the assay of protein synthesis has become of increasing importance, and the present paper will examine alterations of such synthesis in specific stresses as hemodynamic overload, anoxia and exposure to ethanol or its metabolites.

Keywords

Protein Synthesis Coronary Flow Contractile Protein Ethanol Exposure Specific Radioactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASCHENBRENNER, V., ZAK, R., CUTILLETA, A.F. and RABIONOWITZ, M. (1971): Effect of hypoxia on degradation of mitochondrial components in rat cardiac muscle. Am. J. Physiol. 221: 1418 – 1425.Google Scholar
  2. BARTSOVA, D., CHVAPIL, M., KORECKY, B., POUPA, O., RAKUSAN, K., TUREK, Z., and VISEK, M. (1969): The growth of the muscular and collagenous parts of the rat heart in various forms of cardio-megaly. J. Physiol. (Lond) 200: 285–295.Google Scholar
  3. BING, R.J., TILLMAS, H., FAUVEL, J., SEELER, K., and MAO, J.C. (1974): Effect of prolonged alcohol administration on calcium transport in heart muscle of the dog. Circ. Res. 35: 33–338.Google Scholar
  4. BUCCINO, R.H., HARRIS, E., SPANN, J.F. and SONNENBLICK, E.H. (1969): Response of myocardial connective tissue to development of experimental hypertrophy. Am. J. Physiol. 216: 425–428.Google Scholar
  5. EVANS, C.D., SCHREIBER, S.S., ORATZ, M. and ROTHSCHILD, M.A. (1978): Synthesis of myosin heavy and light chains in the afterloaded guinea pig right ventricle in vitro using carrier dilution method with heterologous carriers. Cardiovasc. Res. 2: 731–743.CrossRefGoogle Scholar
  6. EVANS, C.D., SCHREIBER, S.S., ORATZ, M. and ROTHSCHILD, M.A. (1981): Relative synthesis of cardiac contractile proteins. Evidence for synthesis from the same precursor pool. Biochem. J. 194: 673–678.Google Scholar
  7. GAILIS, L. and VERDY, M. (1971): Effect of ethanol and acetaldehyde on the metabolism and cellular resistance of the perfused heart. Can. J. Biochem. 49: 227–233.CrossRefGoogle Scholar
  8. GARLICK, P.J. (1978): An analysis of errors in estimation of the rate of protein synthesis by constant infusion of labeled amino acid. Biochem. J. 176: 402–405.Google Scholar
  9. GOLBERG, A.L. and GOODMAN, H.M. (1969): Amino acid transport during work induced growth of skeletal muscle. Am. J. Physiol. 216: 111–115.Google Scholar
  10. HEARSE, D.J. (1977): Reperfusion of the ischemic myocardium. J. Mol. Cell. Cardiol. 9: 605–613.CrossRefGoogle Scholar
  11. HIROTA, Y., BING, O.H.L. and ABELMAN, W.H. (1976): Effect of ethanol in contraction and relaxation of isolated rate ventricular muscle. J. Mol. Cell. Cardiol. 8: 727–732.CrossRefGoogle Scholar
  12. HIDER, R.C., FERN, E.B. and LONDON, D.R. (1971): Identification in skeletal muscle of a distinct extracellular pool of amino acids and its role in protein synthesis. Biochem. J. 121: 817–827.Google Scholar
  13. ILAN, J. and SINGER, M. (1975): Sampling of the leucine pool from the growing peptide chain. Difference in leucine specific activity of peptidyl transfer tRNA from free and membrane bound polysomes. J. Mol. Biol. 91; 39–51.CrossRefGoogle Scholar
  14. JEFFERSON, L.S., WOLPERT, E.B., GIGER, K.E. and MORGAN, H.E. (1971): Regulation of protein synthesis in heart muscle III. Effect of anoxia on protein synthesis. J. Biol. Chem. 246: 2171–2178.Google Scholar
  15. JENNINGS, R.B. and GANOE, C.E. (1974): Structural changes in myocardium during acute ischemia. Circ. Res. 34 (Suppl. III): 156–172.Google Scholar
  16. KORSTEIN, M.D., MATSUSAKI, S., FEINMAN, L. and LIEBER, C.S. (1975): High blood acetaldehyde levels after ethanol administration. N. Engl. J. Med. 292: 386–389.CrossRefGoogle Scholar
  17. LAGRANGE, B.M. and LOW, R.B. (1976): Turnover of myosin heavy and light chains in cultured embryonic chick cardiac and skeletal muscle. Dev. Biol. 54: 214–229.CrossRefGoogle Scholar
  18. LESCH, M., GORLIN, R., and SONNENBLICK, E.H. (1970): Myocardial amino acid transport in the isolated rabbit right ventricular papillary muscle. Circ, Res. 27: 445–460.Google Scholar
  19. LIEBER, C.S., SPRITZ, N., and DECARLI, L.M. (1966): Accumulation of triglycerides in heart and kidney after alcohol ingestion. J. Clin. Invest. 45: 1041–1051.Google Scholar
  20. LINDY, S., TURTO, H., and UITTO, J. (1972): Protocollagen proline hydroxylase activity in rat heart during experimental cardiac hypertrophy. Circ. Res. 30: 205–209.Google Scholar
  21. MARTIN, A.F., REDDY, M.K., ZAK, R., DOWELL, R.J. and RABINOWITZ, M. (1974): Protein metabolism in hypertrophied heart muscle. Circ. Res. (Suppl. III) 34 & 35: III 32–40.Google Scholar
  22. MCKEE, E.E., CHEUNG, J.Y., RANNELS, D.E. and MORGAN, H.E. (1978): Measurement of the rate of protein synthesis and compartment-ation of heart phenylalanine. J. Biol. Chem. 253: 1030–1040.Google Scholar
  23. MORGAN, H.E., EARL, D.C.N., BROADUS, A., WOLPERT, E.B., GIGER, K.E., and JEFFERSON, L.S. (1971): Regulation of protein synthesis in heart muscle. Effect of amino acid levels on protein synthesis. J. Biol. Chem. 246: 2152–2162.Google Scholar
  24. MORKIN, E., KIMATA, S., and SKILLMAN, J.J. (1972): Myosin synthesis and degradation during development of cardiac hypertrophy. Circ. Res. 30: 690–702.Google Scholar
  25. MOWBRAY, J. and LAST, K.S. (1974): Evidence against the incorporation into protein of amino acids directly from the membrane transport system in rat heart. Biochem. Biophys. Acta. 349: 4–122.Google Scholar
  26. Opie, L.H., Mansford, K.R.L. and Owen, P. (1971): Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem. J. 124: 475–490.Google Scholar
  27. Oratz, M., Schreiber, S.S. and Rothschild, M.A. (1973): Study of albumin synthsis in relation to urea synthesis. Gastroenterology 65: 647–650.Google Scholar
  28. ORATZ, M., SCHREIBER, S.S. and ROTHSCHILD, M.A. (1977): Differing effects of synthesis. In Currents in Alcoholism. 1: 47–68. F. Seixas. (Ed.) Grune & Stratton, New York, N.Y.Google Scholar
  29. PAGE, E., POLIMENI, P.I., ZAK, R., EARLY, J. and JOHNSON, M. (1971): Myofibrillar mass in rat and rabbit muscle. Correlation of microchemical and stereological measurements in normal and hypertrophic hearts. Circ. Res. 30: 430–439.Google Scholar
  30. REGAN, T.J. and ETTINGER, P.O. (1979): Varied cardiac abnormalities in alcoholics. Clin. Exp. Res. 3: 40–50.CrossRefGoogle Scholar
  31. RAWAT, A.K. (1979): Inhibition of cardiac protein synthesis by prolonged ethanol administration. Res. Com. Chem. Pathol, and Pharmacol. 25: 89–102.Google Scholar
  32. RUBIN, E. (1979): Alcoholic myopathy in heart and skeletal muscle. N. Engl. J. Med. 301: 28–33.CrossRefGoogle Scholar
  33. SCHREIBER, S.S., ORATZ, M. and ROTHSCHILD, M.A. (1966): Protein synthesis in the overloaded mammalian heart. Am. J. Physiol. 211: 314–318.Google Scholar
  34. SCHREIBER, S.S., ORATZ, M., EVANS, C.D., SILVER, E. and ROTHSCHILD, M.A. (1968): Effect of acute overload on cardiac muscle mRNA. Am. J. Physiol. 215: 1250–1259.Google Scholar
  35. SCHREIBER, S.S., ORATZ, M. , EVANS, C.D., GUEYIKIAN, I. and ROTHSCHILD, M.A. (1970): Myosin myoglobin and collagen syntheses in acute cardiac overload. Am. J. Physiol. 219: 481–486.Google Scholar
  36. SCHREIBER, S.S. (1971): Initiation of protein synthesis in the acutely overloaded perfused heart. In Cardiac Hypertrophy” N. Alpert (Ed)., Academic Press, N.Y.Google Scholar
  37. SCHREIBER, S.S. and BRIDEN, K. (1972): Ethanol, acetaldehyde and myocardial protein synthesis. J. Clin. Invest. 51: 2820–2826.CrossRefGoogle Scholar
  38. SCHREIBER, S.S., ORATZ, M., EVANS, C.D., REFF, F., KLEIN, I. and ROTHSCHILD, M.A. (1973): Cardiac protein degradation in acute overload in vitro: Reutilization of amino acid. Am. J. Physiol. 224: 338–345.Google Scholar
  39. Schreiber, S.S., Oratz, M., Rothschild, M.A., Reff, F. and Evans, C (1974): Alcoholic cardiomyopathy II. The inhibition of cardiac microsomal protein synthesis by acetaldehyde. J. Mol. Cell. Cardiol. 6: 207–213.CrossRefGoogle Scholar
  40. SCHREIBER, S.S., ROTHSCHILD, M.A., EVANS, C.D., REFF, F., and ORATZ, M. (1975): The effect of pressure or flow stress on right ventricular protein synthesis in the face of constant and restricted coronary flow. J. Clin. Investig. 55: 1–11.CrossRefGoogle Scholar
  41. Schreiber, S.S., Hearse, D.J., Oratz, M. and Rothschild, M.A., (1977): Protein synthesis in prolonged cardiac arrest. J. Mol. Cell. Cardiol. 9: 87–100.CrossRefGoogle Scholar
  42. SCHREIBER, S.S., ORATZ, M., ROTHSCHILD, M.A. and REFF, F. (1978): The effect of hydrostatic pressure on isolated cardiac nuclei. Stimulation of RNA II polymerase activity. Cardiovasc. Res. 12: 265–268.CrossRefGoogle Scholar
  43. SCHREIBER, S.S., EVANS, C.D., ORATZ, M. and ROTHSCHILD, M.A. (1981): Protein synthesis and degradation in cardiac stress. Circ. Res. 48: 601–611.Google Scholar
  44. SEGEL, L.D., RENDIG, S.V. and MASON, D.T. (1979): Left ventricular dysfunction of isolated working rat hearts after chronic alcohol consumption. Cardiovasc. Res. 13: 136–146.CrossRefGoogle Scholar
  45. STEIN, T.P., LESKIW, M.J., BüZBY, G.P., GIandOMENICO, A.L., WALLACE, H.W. and MULLEN, J.L. (1980): Measurement of protein synthesis rats with 15N-glycine. Am. J. Physiol. 239: E294–E300.Google Scholar
  46. VIDRICH, A., AIRHART, J., BRUNO, M.K. and KHAIRALLAH, A. (1977): Compartmentation of free amino acids for protein biosynthesis. Biochem. J. 162: 257–266.Google Scholar
  47. WATKINS, C.A. and RANNELS, D.E. (1980): Measurements of protein synthesis in rat lungs perfused in situ. Biochem. J. 182: 269–278.Google Scholar
  48. WHITMAN, V., SCHULER, H.G. and MUSSELMAN, J. (1980): Effects of chronic ethanol consumption on the myocardial hypertrophic response to pressure overload in the rat. J. Mol. Cell. Cardiol. 12: 519–525.CrossRefGoogle Scholar
  49. WIKMAN-COFFELT, J., SELIS, R., FENNER, C. and MASON, D.T. (1973): Studies on the synthesis and degradation of light and heavy chains of myosin. J. Biol. Chem. 248: 5206–5207Google Scholar
  50. WILLIAMS, I.H., SUGDEN, P.H., and MORGAN, H.E. (1981): Use of aromatic amino acids as monitors of protein turnover. Am. J. Physiol. 240: E677–E681.Google Scholar
  51. ZAK, R., MARTIN, A.F., PRIOR, G., and RABINOWITZ, M. (1977): Comparison of turnover of several myofibrillar proteins and critical evaluation of double istope method. J. Biol. Chem. 252: 3430–3435.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Sidney S. Schreiber
    • 1
    • 2
    • 3
  • Murray Oratz
    • 1
    • 2
    • 3
  • Marcus A. Rothschild
    • 1
    • 2
    • 3
  1. 1.Department of Nuclear MedicineVeterans Administration Medical CenterN.Y.USA
  2. 2.Department of MedicineNew York University School of MedicineUSA
  3. 3.Department of BiochemistryNew York University School of DentistryUSA

Personalised recommendations