Calcium and Erythrocyte Microrheology: Pharmacological Applications

  • J. F. Stoltz
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 62)


Apart from the control and regulation mechanisms of the cardiovascular system, blood’s rheological properties also play a fundamental part in maintaining a good tissue perfusion. Although for very many years these parameters were neglected, they are now fully recognized. Of these parameters, erythrocyte deformability is no doubt one of the most important determinants in understanding microcirculation and the corresponding tissue exchanges. In parallel with these physiological studies, some recent work has made it possible to define the biochemical mechanisms that combine to preserve erythrocyte deformability. The importance of calcium has already been mentioned. This work is aimed at anticipating an investigation into how calcium interferes with the microrheological properties of the erythrocyte, as well as into the influence of pharmacological agents known for their calcium antagonist properties.


Calcium Antagonist Erythrocyte Deformability Human Erythrocyte Membrane Internal Viscosity Erythrocyte Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANDERSON, D.R., DAVIS, J.L. and CARRAWAY, K.L. (1977): Calcium-promoted changes of the human erythrocyte membrane. J. Biological Chem. 252: 6617–6623.Google Scholar
  2. BERNARD, J.F. , BOURNIER, O. and BOIVIN, P. (1975): Human erythrocytic calcium concentration in hemolytic anemia. Biomedicine 23: 431–433.Google Scholar
  3. CLARK, M.R., MOHandAS, N. , FEO, C. and JACOBS, M.S. (1981): Separate mechanisms of deformability loss in ATP-depleted and Ca++-load-ed erytrocytes. J. Clin. Invest. 67: 531–539.CrossRefGoogle Scholar
  4. DE CLERCK, F., DAVIS, J.L. (1980): Pharmacological control of platelet and red blood cell function in the microcirculation. J. Cardiovasc. Pharmacol. 3: 1388–1412.CrossRefGoogle Scholar
  5. DE CLERCK, F., BEERENS, M., THONE, F., BORGERS, M. and VERHEYEN, A. (1980): The effect of flunarizine on the human cell shape changes and calcium deposition induced by A 23187. in : Hemo-rheology and diseases. Proceeding the First European Conference Conference on Clinical Hemorheology — Nancy October 1979 — J.F. Stoltz and P. Drouin, (Eds,). Doin publ. (Paris), 669–676.Google Scholar
  6. FLECKENSTEIN, A. (1977): Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol., 17: 149–166.CrossRefGoogle Scholar
  7. GRAF, E., and PENNINGSTON, J.J. (1981): Ca-ATP : the substrate at low concentration of Ca++ Atpase from human erythrocyte membranes. J. Biol. Chem. 256: 1587–1592.Google Scholar
  8. KIRKPATRICK, G.H., HILLMAN, D.G., and LA CELLE, P.L. (1975): A 23187 and red cells : changes in deformability, K+, Mg++, Ca++, and ATP. Experientia 31: 653–654.CrossRefGoogle Scholar
  9. KRETCHMAN, E.M., and ROGERS, B.S. (1981): Erythrocyte shape transformation associated with calcium accumulation. Am. J. Med. Technicol. 47: 561–566.Google Scholar
  10. KUETTNER, J.F., DREHER, K.L., RAO, G.H.R., EATON, J.W., BLACKSHEAR, P.L., and WHITE, J.G. (1977): Influence of the ionophore A 23187 on the plastic behaviour of normal erythrocytes. Amer. J. Pathol. 88: 81–94.Google Scholar
  11. Larsen, F.L., Katz, S., Roufogalis, B.D., and Brooks, D.E., (1981): Physiological shear stresses enhance the Ca++ permeability of human erythrocytes. Nature 294: 667–668.CrossRefGoogle Scholar
  12. MOCHandOS, N., CLARCK, R., FEO, C., JACOBS, M.S. and SHOTET, B. (1981): Factors that limit whole cell deformability in erythrocytes after calcium loading and ATP depletion. Prog. Clin. Res. 55: 423 – 437.Google Scholar
  13. PALEK, J. (1977): Red cell calcium content and transmembrane calcium movements in sickle cell anemia. J. Lab. Clin. Med. 89: 1365 – 1374.Google Scholar
  14. PALEK, J., LIU, A., LIU, D., SNYDER, L.M., FORTIER, N.L., NJOKU, G., KIERNAN, F., FUNK, D., and CRUSBERG, T. (1977): Effect of procaine HCl on ATP/calcium dependent alterations in red cell shape and deformability. Blood 50: 155–164.Google Scholar
  15. PORSCHE, E., and STEFANOVICH, V. (1981): Die Wirkung von Pentoxifyllin auf den Ca++ Induzierten Kalium-Ausstrom und auf die ATPase — Activität von Erythrozyten. Arzneim. Forsch. 31: 825–828.Google Scholar
  16. ROGAUSCH, H. (1978): Influence of Ca on red cell deformability and adaptation to sphering agents. Pflürgers Arch. 373: 43–47.CrossRefGoogle Scholar
  17. SARKARDI, B. (1980): Active calcium transport in human red cells. (1980): Biochim. Biophys. Acta, 604: 159–190.CrossRefGoogle Scholar
  18. SCHMID-SCHONBEIN, H. (1981): Blood rheology and physiology of microcirculation. La Ricerca Clin. Lab. II(suppl): 13–33.Google Scholar
  19. SCOTT, C.K., PRESICO, F.J., CARPENTIER, K., and CHASIN, M. (1980): The effects of flunarizine, a new calcium antagonist of human red blood cells in vitro. Angiology 31: 320–330.CrossRefGoogle Scholar
  20. SEAMAN, G.V.F., VASSAR, P.S., and KENDALL, M.J. (1969): Calcium ion binding to blood cell surfaces. Experientia, 25: 1259.CrossRefGoogle Scholar
  21. SLONIM, A., CRISTAL, N., EREZ, R., and SHAINKIN-KESTENBAUM, R. (1981): The effect of Nifedipine, a calcium antagonist on red blood cell filterability (RCF). Second European Conference on Clinical Hemorheology. (London).Google Scholar
  22. SHEETZ, M.P., SCHINDLER, M., and KOPEL, D.E. (1980): Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 285: 510–511.CrossRefGoogle Scholar
  23. SMITH, B.D., LA CELLE, P.L., SIEFRING, G.E., LOWE-KRENTZ, L., and LORand, L. (1981): Effects of the calcium mediated enzymatic cross linking of membrane proteins on cellular deformability. J. Memb. Biol., 61: 75–80.CrossRefGoogle Scholar
  24. STOCLET, J.C. (1981): An ubiquitous protein which regulates calcium dependent cellular functions and calcium movements. Biochem. Pharmacol. 30: 1723–1729.CrossRefGoogle Scholar
  25. STOLTZ, J.F., STREIFF, F., LARCAN, A., and NICLAUSE, M. (1971): Mise en évidence de la fixation des ions calcium surla membrane des globules rouges humains à l’aide de l’électrophorêse en phase liquide. J. de Chimie Physique, 10: 1555–1556.Google Scholar
  26. STOLTZ, J.F. (1981): Main determinants of red blood cell deformability. Clinical and pharmacological approaches. Recent Advances in Cardiovascular Disease 2(suppl): 1–20.Google Scholar
  27. Van Nueten, M., Van Beek, J., and Janssen, P.A.J., (1978): The vascular effects of flunarizine as compared with those of other clinically used vasoactive substances. Arzneimittel-Forschung drug research; 28: 2082–2087.Google Scholar
  28. VAN NUETTEN, J.M., and VANHOUTTE, P.M. (1980): Improvement of tissue perfusion with inhibitors of calcium ion influx. Biochem. Pharmacol. 29: 479–481.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. F. Stoltz
    • 1
  1. 1.Groupe d’Hémorhéologie Centre de Transfusion Sanguine BraboisVandoeuvre - lés - NancyFrance

Personalised recommendations