Advertisement

Ischaemia in the Heart Due to Atherosclerotic Mechanisms, Flow Anomalies and Vascular Spasm

  • Daniel J. Schneck
  • Roy B. Davis
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 62)

Abstract

This paper addresses ischaemia in the heart due to atherosclerotic mechanisms that can be related back to endothelial injury. Furthermore, endothelial injury is examined from a fluid dynamic point of view.

Keywords

Arterial Wall Flow Separation Adverse Pressure Gradient Wake Region Coronary Spasm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BERNE, R.M., RUBIO, R., DOGSON, J.G., and CURNISH, R.R. (1971): Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood. flow regulation. Circulation Research 39: 115.Google Scholar
  2. BREEMEN, C. VAN, AARONSON, P., LOUTZENHISER, R., and MEISHERI, K. (1980): Ca2+ movements in smooth muscle. Chest 78(#1): 157.CrossRefGoogle Scholar
  3. CARO, C.G., FITZ-GERALD, J.M., and SCHROTER, R.C. (1971): Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. London B 177: 109.CrossRefGoogle Scholar
  4. CASTEELS, R. (1980): Electro- and pharmacomechanical coupling in vascular smooth muscle. Chest 78(#1): 150.CrossRefGoogle Scholar
  5. CHAHINE, R.A. (1979): Coronary artery spasm: Its role in the pathogenesis of myocardial ischaemia. Clin. Cardiol. 2: 224.Google Scholar
  6. CONSTANTINIDES, P. (1970): The role of endothelial injury in arterial thrombosis and atherogenesis. In “Thrombosis and Coronary Heart Disease” P.O. Halonen and A. Louhija (Editors), pp. 67–71, S. Karger, New York.Google Scholar
  7. CONTI, C.R., PEPINE, C.J., and CURRY, R.C. (1979): “Current Problems in Cardiology”, 4(#4), Year Book Medical Publishers, Inc., Chicago.Google Scholar
  8. DAWES, G.S. (1941): The vasodilator action of potassium. J. Physiol. 99: 224.Google Scholar
  9. DESPARD, R.A., and MILLER, J.A. (1971): Separation in oscillating laminar boundary-layer flows. J. Fluid Mech. 47(Part I): 21.CrossRefGoogle Scholar
  10. FLAHERTY, J.T., FERRANS, V.J., PIERCE, J.E., CAREW, T.E., and FRY, D.L. (1972a): Localizing factors in experimental atherosclerosis. In “Atherosclerosis and Coronary Heart Disease” W. Likoff, B.L. Segal, W. Insull Jr., and J.H. Moyer (Editors), pp. 40–84, Grune and Stratton, New York.Google Scholar
  11. FLAHERTY, J.T., PIERCE, J.E., FERRANS, V.J., PATEL, D.J., TUCKER, W.K., and FRY, D.L. (1972b): Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ. Res. XXX: 23.Google Scholar
  12. FRIEDMAN, S.M., and FRIEDMAN, C.L. (1962): Effect of ions on vascular smooth muscle. In “Handbook of Physiology, Circulation, Volume 2” W.F. Hamilton and P. Dow (Editors), Chapter 33, pp. 1135–1166, American Physiologial Society, Washington, D.C.Google Scholar
  13. FRY, D.L. (1968): Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res. XXII: 165.Google Scholar
  14. FRY, D.L. (1972): Localizing factors in arteriosclerosis. In “Atherosclerosis and Coronary Heart Disease” W. Likoff, B.L. Segal, W. Insull Jr., and J.H. Moyer (Editors), pp. 85–104, Grune and Stratton, New York.Google Scholar
  15. GOULD, L., and REDDY, C.V.R. (1980): Coronary artery spasm. Angiology 31: 365.CrossRefGoogle Scholar
  16. GUTSTEIN, W.H., LATAILLADE, J.N., and LEWIS, L. (1962): The role of vasoconstriction in experimental arteriosclerosis. Circ. Res. X: 925.Google Scholar
  17. GUTSTEIN, W.H., LAZZARINI-ROBERTSON JR., A., and LATAILLADE, J.N. (1963): The role of local arterial irritability in the development of arterio-atherosclerosis. Am. J. Path. 42: 61.Google Scholar
  18. GUTSTEIN, W.H., and SCHNECK, D.J. (1967): In vitro boundary layer studies of blood flow in branched tubes. J. Atheroscler. Res. 7(#3): 295.CrossRefGoogle Scholar
  19. GUTSTEIN, W.H., SCHNECK, D.J., and MARKS, J.O. (1968): In vitro studies of local blood flow disturbance in a region of separation. J. Atheroscler. Res. 8(#3): 381.CrossRefGoogle Scholar
  20. GUTSTEIN, W.H., FARRELL, G., and SCHNECK, D.J. (1970): In vivo demonstration of junctional blood flow disturbance by hot wire anemometry. Atherosclerosis 11(#3): 485.CrossRefGoogle Scholar
  21. GUTSTEIN, W.H., FARRELL, G.A., and ARMELLINI, C. (1973): Blood flow disturbance and endothelial cell injury in preatherosclerotic swine. Lab. Invest. 29(#2): 134.Google Scholar
  22. GUTSTEIN, W.H., (1981): Personal Communication.Google Scholar
  23. HARTSHORNE, D.J. (1980): Biochemical basis for contraction of vascular smooth muscle. Chest 78(#1): 140.CrossRefGoogle Scholar
  24. HELLSTROM, H.R. (1979): Coronary artery vasospams: The likely immediate cause of acute myocardial infarction. British Heart Journal 41: 426.CrossRefGoogle Scholar
  25. HISTAND, M.B. (1971): The influence of hemodynamics on the development of atherosclerosis. In “Proceedings of the 24th Annual Conference on Engineering in Medicine and Biology” Paper 21.8, 13: 172, Alliance for Engineering in Medicine and Biology, Bethesda, Maryland.Google Scholar
  26. JACOB, S.W., and FRANCONE, S.A. (1974): “Structure and Function in Man”, W.B. Saunders Company, Philadelphia.Google Scholar
  27. KIRAN, B.K., and KHAIRALLAH, P.A. (1969): Angiostensin and norepinephrine efflux. Eur. J. Pharmacol. 6: 102.CrossRefGoogle Scholar
  28. LATAILLADE, J.N., GUTSTEIN, W.H., and LAZZARINI-ROBERTSON, JR. A. (1964): Study of experimental vasodilation of rabbit abdominal aorta and its relationship to arterio-atherosclerosis. J. Atheroscler. Res. 4: 81.CrossRefGoogle Scholar
  29. LIKOFF, W., SEGAL, B., INSULL, W., JR., and MOYER, J.H. (Editors). (1972): “Atherosclerosis and Coronary Heart Disease”, Grune and Stratton, N.Y.Google Scholar
  30. LING, S.C., ATABEK, H.B., FRY, D.L., PATEL, D.J., and JANICKI, J.S. (1968). Application of heated film velocity and shear probes to hemodynamic studies. Circulation Research 23: 789.Google Scholar
  31. MARZILLI, M., GOLDSTEIN, S., TRIVELLA, M.G., PALUMBO, C., and MASERI, A. (1980): Some clinical considerations regarding the relation of coronary vasospasm to coronary atherosclerosis: A hypothetical pathogenesis. Am. J. Cardiol. 45: 882.CrossRefGoogle Scholar
  32. MASERI, A., L’ABATTE, A., CHIERCHIA, S., PARODI, O., SEVERI, S., BIAGINI, A., DISTANTE, A., MARZILLI, M., and BALLESTRA, A.M. (1979): Significance of spasm in the pathogenesis of ischaemic heart disease. Am. J. Cardiol. 44: 788.CrossRefGoogle Scholar
  33. MASERI, A., and CHIERCHIA, S. (1980): Coronary vasospasm in ischaemic heart disease. Chest 78(#1): 210.CrossRefGoogle Scholar
  34. MCDONALD, O.A. (1960: “Blood Flow in Arteries”, pp. 55–77 and 146–198, Edward Arnold Publishers Ltd., London.Google Scholar
  35. MONCADA, S., HERMAN, A.G., HIGGS, E.A., and VANE, J.R. (1977): Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the antithrombotic properties of vascular endothelium. Thrombosis Research. 11: 323.CrossRefGoogle Scholar
  36. MOORE, F.K. (1958): On the separation of the unsteady laminar boundary layer. In “Boundary Layer Research” J. Gortler (Ed.), pp. 296–311, Springer, Berlin.Google Scholar
  37. MUSTARD, J.F., MURPHY, E.A., ROWSELL, H.C., and DOWNIE, H.G. (1962): Factors influencing thrombus formation in vivo. Am. J. Med. 33: 621.CrossRefGoogle Scholar
  38. PRANDTL, L. (1904, 1927, 1943): Uber Flussigkeitsbewegung bei sehr kleiner Reibung. In “Verhandlung des III Intern. Math.-Kongresses, Heidelberg, zur Hydrodynamik u. Aerodynamik, Gottingen” pp. 1–8, Edwards Brothers, Ann Arbor, Michigan.Google Scholar
  39. ROSS, G. (1976): Adrenergic responses of the coronary vessels. Circ. Res. (Brief Reviews) 39: 461.Google Scholar
  40. ROTT, N. (1956): Unsteady viscous flow in the vicinity of stagnation point. Quart. Appl. Math. 13: 444.Google Scholar
  41. SAKO, Y. (1962): Effects of turbulent flow and hypertension on experimental atherosclerosis. J. Am. Med. Assoc. 179: 36.CrossRefGoogle Scholar
  42. SCHARFSTEIN, H., GUTSTEIN, W.H., and LEWIS, L. (1963): Changes of boundary layer flow in model systems: Implications for initiation of endothelial injury. Circulation Research 13: 580.Google Scholar
  43. SCHNECK, D.J. (1977): Pulsatile blood flow in a channel of small exponential divergence — III. Unsteady flow separation. J. Fluids Eng. 99(Ser. 1, #2): 333.CrossRefGoogle Scholar
  44. SCHNECK, D.J. (1980): Some thoughts on pulsatile flow separation in the cardiovascular system. In “Proceedings of the 17th Annual Meeting of the Society of Engineering Science” A.W. Marris (Ed.) pg. 87, The Society of Engineering Science, Inc., Atlanta, Georgia.Google Scholar
  45. SCHNECK, D.J. (1981): Deductive physiologic analysis in the presence of “Will” as an undefined variable. Int’l J. Math. Modelling 2(#3): 191.CrossRefGoogle Scholar
  46. SCHNECK, D.J., and GUTSTEIN, W.H. (1966): Boundary layer studies in blood flow. ASME Paper Number 66-WA/BHF-4, American Society of Mechanical Engineers, New York.Google Scholar
  47. SCHNECK, D.J., and OSTRACH, S. (1972a): Oscillating blood flow in a cylindrical channel of small exponential divergence. In “Proceedings of the Third Annual Meeting of the Biomedical Engineering Society”, page 40, Biomedical Engineering Society, Culver City, California.Google Scholar
  48. SCHNECK, D.J., and OSTRACH, S. (1972b): Boundary layer separation in pulsating flow and its relation to atherogenesis. In “Proceedings of the 25th Annual Conference of Engineering in Medicine and Biology” Paper #27.6, 14: 218, Alliance for Engineering in Medicine and Biology, Bethesda, Md.Google Scholar
  49. SCHNECK, D.J., and OSTRACH, S. (1973a): Pulsatile blood flow in a diverging circular channel. Technical Report Number FTAS/TR-73–86, Case-Western Reserve University, Cleveland, Ohio.Google Scholar
  50. SCHNECK, D.J., and OSTRACH, S. (1973b): Dependence of unsteady flow separation on frequency of oscillation. In “Proceedings of the 25th Annual Conference of Engineering in Medicine and Biology” Paper #32.9, 15:309, Alliance for Engineering in Medicine and Biology, Bethesda, Maryland.Google Scholar
  51. SCHNECK, D.J., and OSTRACH, S. (1975): Pulsatile blood flow in a channel of small exponential divergence — I. The linear approximation for low mean Reynolds numbers. J. Fluids Eng. 97(Ser. 1, #3): 353.CrossRefGoogle Scholar
  52. SCHNECK, D.J., and WALBURN, F.J. (1976): Pulsatile blood flow in a channel of small exponential divergence — II. Steady streaming due to the interaction of viscous effects with convected inertia. J. Fluids Eng. 98(Ser. 1, #4): 707.CrossRefGoogle Scholar
  53. SCHNECK, D.J., and WALBURN, F.J. (1978): The separation point trajectory in internal pulsatile flows. In “Proceedings of the 31st Annual Conference of Engineering in Medicine and Biology” Paper #26.8, 20: 226, Alliance for Engineering in Medicine and Biology, Bethesda, Maryland.Google Scholar
  54. SCHNECK, D.J., and WALBURN, F.J. (1979): Unsteady laminar-flow separation in tubes — II. The effect of variations in the frequency and amplitude of flow oscillations. Technical report Number VPI-E-79–21, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.Google Scholar
  55. SCHNECK, D.J., WALBURN, F.J., and RICHARDSON, S.M. (1975): Unsteady laminar flow separation in tubes — I. The effect of non-linear streaming. Technical Report Number VPI-E-75–21-A, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.Google Scholar
  56. SCHWARTZ, C.J., and MITCHELL, M.R.A. (1962): Observations on localization of arterial plaques. Circulation Research 11: 63.Google Scholar
  57. SEARS, W.R., (1956): Some recent developments in airfoil theory. J. Aero. Sci. 23: 490.Google Scholar
  58. SEARS, W.R., and TELIONIS, D.P. (1975): Boundary-layer separation in unsteady flow. SIAM J. Appl. Math. 28(#1): 215.Google Scholar
  59. SPAET, T.H., and GAYNOR, E. (1970): Vascular Endothelial Damage and Thrombosis. In “Thrombosis and Coronary Heart Disease” P.I. Halonen and A. Louhija (Editors), pp. 47–66, S. Karger, New York.Google Scholar
  60. TELIONIS, D.P. (1975): Calculations of time-dependent boundary layers. In “Unsteady Aerodynamics” R.B. Kinney (Ed.), pp. 155–190, The Arizona Board of Regents, Tucson, Arizona.Google Scholar
  61. TEXON, M. (1957): A hemodynamic concept of atherosclerosis, with particular reference to coronary occlusion. Arch, Int. Med. 99: 418.CrossRefGoogle Scholar
  62. TURLAPATY, P.D.M.V., and ALTURA, B.M. (1980): Magnesium deficiency produces spasms of coronary arteries: Relationship to etiology of sudden death ischemic heart disease. Science 208: 198.CrossRefGoogle Scholar
  63. VELICAN, D. (1980): Coronary vasospasm as a pathogenetic mechanism of coronary heart disease. Rev. Roum. de Med. Int. 18(#1): 25.Google Scholar
  64. WALBURN, F.J., and SCHNECK, D.J. (1978): An experimental technique for quantifying unsteady flow separation in diverging circular channels. In “Proceedings of the First Mid-Atlantic Conference on Bio-Fluid Mechanics”, D.J. Schneck (Ed.), pp. 161–170, The Virginia Polytechnic Institute and State University Press, Blacksburg, Virginia.Google Scholar
  65. WALBURN, F.J., and SCHNECK, D.J. (1980): An experimental investigation of pulsatile laminar flow separation in exponentially diverging tubes. In “Biofluid Mechanics * 2”, D.J. Schneck (Ed.), pp. 433–456, Plenum Press, New York.Google Scholar
  66. ZELIS, R.F., and SCHROEDER, J.S. (Editors, 1980): Calcium, Calcium Antagonists, and Cardiovascular Disease, (Chest 78(#l): Supplement.Google Scholar
  67. ZELLER, H., TALUKDER, N., and LORENZ, J. (1970): Model studies of pulsating flow in arterial branches and wave propagation in blood vessies. In “Fluid Dynamics of Blood Circulation and Respiratory Flow”, Paper #15, Agard Conference of Proceedings #65–70.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Daniel J. Schneck
    • 1
  • Roy B. Davis
    • 1
  1. 1.Department of Engineering, Science and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations