The Ca-Antagonist Nifedipine Reduces Purine Nucleoside and Oxypurine Release from Ischemic Heart

  • Jan Willem de Jong
  • Eef Harmsen
  • Peter P. de Tombe
  • Elisabeth Keijzer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 165)


Nifedipine* is a blocker of slow Ca-channels1,2, which is presently used for the treatment of angina pectoris and hypertension. Nifedipine -like other Ca-antagonists- is thought to have an ATP-sparing effect, but the data available are conflicting3–5. We studied the effect of nifedipine on nucleotide metabolism in the isolated (ischemic) rat heart. We used release of adenosine (catabolites) as a sensitive indicator for adenine nucleotide breakdown6. Nifedipine decreased the release of adenosine, inosine and (hypo)-xanthine during ischemia and reperfusion.


Coronary Flow Adenine Nucleotide Energy Charge Purine Nucleoside Dimethyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Fleckenstein, H. Tritthart, H.-J. Doring, and K.Y. Byon, Bay a 1040 — Ein hochaktiver Ca++-antagonistischer Inhibitor der Elektromechanischen Koppelungsprozesse im Warmblüter-Myokard, Arzneimittelforsch. 22: 22 (1972).PubMedGoogle Scholar
  2. 2.
    W.G. Nayler, and P. Poole-Wilson, Calcium antagonists: definition and mode of action, Basic Res. Cardiol, 76: 1 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    W.G. Nayler, R. Ferrari, and A. Williams, Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Amer. J. Cardiol. 46: 242 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    T.J.C. Higgins, D. Allsopp, and P.J. Bailey, The effect of extracellular calcium concentration and Ca-antagonist drugs on enzyme release and lactate production by anoxic heart cell cultures, J. Mol. Cell. Cardiol. 12: 909 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Ichihara, M. Ichihara, and Y. Abiko, Effect of verapamil and nifedipine on ischemic myocardial metabolism in dogs, Arzneimittelforschung/Drug Res. 29: 1539 (1979).Google Scholar
  6. 6.
    J.W. de Jong, Biochemistry of acutely ischemic myocardium, in: “The Pathophysiology of Myocardial Perfusion”, W. Schaper, ed., Elsevier, Amsterdam (1979), p. 719.Google Scholar
  7. 7.
    J.W. de Jong, E. Harmsen, P.P. de Tombe, and E. Keijzer, Nifedipine reduces adenine nucleotide breakdown in ischemic rat heart, Eur. J.Pharmacol. 81, in press (1982).Google Scholar
  8. 8.
    E. Harmsen, J.W. de Jong, and P.W. Serruys, Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines, Clin. Chim. Acta 115: 73 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    E. Harmsen, P.P. de Tombe, and J.W. de Jong, Simultaneous determination of myocardial adenine nucleotides and creatine phosphate by high-performance liquid chromatography, J. Chromatogr. 230: 131 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Jan Willem de Jong
    • 1
  • Eef Harmsen
    • 1
  • Peter P. de Tombe
    • 1
  • Elisabeth Keijzer
    • 1
  1. 1.Cardiochemical Laboratory, Thoraxcenter, ErasmusUniversity RotterdamRotterdamThe Netherlands

Personalised recommendations