Advertisement

Non-Specific Adenylate Deaminase from Snail Foot Muscle

  • Andrzej J. Stankiewicz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 165)

Abstract

AMP-deaminase (EC 3.5.4.6) has been known for several years as a main source of ammonia liberated in the skeletal muscle of higher vertebrates. Skeletal muscle is the richest source of AMP-deaminase, and molecular properties as well as regulation of the reaction catalyzed by muscle deaminases were carefully studied and described.2–7

Keywords

White Muscle Helix Pomatia Adenylate Energy Charge Rana Esculenta Vertebrate Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Stankiewicz, Progr. Biochem. (Post. Biochem.) 24: 243–264 (1978).Google Scholar
  2. 2.
    A. Stankiewicz, J. Spychala, A. Skladanowski, and M. Zydowo, Comp. Biochem. Physiol. 62B:363–369 (1979).Google Scholar
  3. 3.
    A. Stankiewicz and J. Spychala, Comp. Biochenu Physiol. 62B:371–374 (1979).Google Scholar
  4. 4.
    A. Stankiewicz and J. Spychala, Comp. Biochenu Physiol. 66B:529–533 (1980).Google Scholar
  5. 5.
    A. Stankiewicz and J. Spychala, Comp. Biochenu Physiol. 69B:5–8 (1981).Google Scholar
  6. 6.
    A. Stankiewicz and J. Spychala, Comp. Biochenu Physiol. 70B:821–824 (1981).Google Scholar
  7. 7.
    A. Stankiewicz and W. Makarewicz, Comp. Biochenu Physiol. (1982: in press).Google Scholar
  8. 8.
    J.M. Lowenstein, Physiol. Rev. 52: 382–414 (1972).PubMedGoogle Scholar
  9. 9.
    A. Stankiewicz, W. Makarewicz, and J. Spychala, XI Int. Congr. Biochenu, Abstracts 04-2-S16: 254 (1979).Google Scholar
  10. 10.
    J. Spychala, A. Stankiewicz, and W. Makarewicz, Comp. Biochenu Physiol. (1982: in press).Google Scholar
  11. 11.
    A. Stankiewicz, unpublished data.Google Scholar
  12. 12.
    J.C. Su, C.C. Li, and C.C. Ting, Biochemistry 5: 536–543 (1966).PubMedCrossRefGoogle Scholar
  13. 13.
    M.G. Yates, Biochim. Biophys. Acta 171: 299–310 (1969).PubMedCrossRefGoogle Scholar
  14. 14.
    N.O. Kaplan, S.P. Collowick, and M.M. Ciotti, J. Biol. Chem. 194: 579–591 (1952).PubMedGoogle Scholar
  15. 15.
    A. Stankiewicz, Comp. Biochem. Physiol. (1982a: in press).Google Scholar
  16. 16.
    J.W. Campbell, R.B. Drotman, J.A. McDonald, and P.R. Tramell, in “Nitrogen Metabolism and the Environment,” J.W. Campbell, L. Goldstein, ed., Academic Press, New York, 1: 1–54 (1972).Google Scholar
  17. 17.
    T.W. Lee and J.W. Campbell, Comp. Biochem. Physiol. 15: 457–468 (1965).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Newton-Linton and J.W. Campbell, Arch. Biochem. Biophys. 97: 360–369 (1962).CrossRefGoogle Scholar
  19. 19.
    Z. Poremska and J. Heller, Acta Biochim. Polon. IX-385-390 (1962).Google Scholar
  20. 20.
    S.F. Rainer, A.M. Ivanovici, and W.A. Wadley, Mar. Biol. 54: 91–99 (1979).CrossRefGoogle Scholar
  21. 21.
    A.M. Ivanovici, Comp. Biochem. Physiol. 66A:43–55 (1980).CrossRefGoogle Scholar
  22. 22.
    A.J. Stankiewicz, Proc. IV Int. Syrap. Human Purine, Pyrimidine Metab. (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Andrzej J. Stankiewicz
    • 1
  1. 1.Department of BiochemistrySchool of MedicineGdanskPoland

Personalised recommendations