Ecto-Adenosine Triphosphatase: An Enzyme Correlating with Resistance to Deoxynucleoside Growth Inhibition

  • Richard M. Fox
  • Lesley C. Wright
  • Gregory H. Reid
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 165)


Cultured leukemic T and Null lymphoblasts are extremely sensitive to growth inhibition by deoxyadenosine, deoxyguanosine and thymidine1. The mechanism of this increased sensitivity appears to reflect the ability of these leukemic cells to accumulate excess deoxyribonucleoside triphosphates (dNTP) at low concentrations of exogenous deoxynucleosides. An analogy may be drawn between the phenomena of deoxynucleoside sensitive T and Null lymphoblasts and the immunodeficiency syndromes associated with inhibited ADA and purine nucleoside Phosphorylase deficiency. By contrast, Epstein-Barr Virus (EBV) transformed human B lymphoblasts are resistant to deoxynucleoside induced growth arrest and fail to accumulate dNTP. Thus, these various cell lines have proven valuable models to study the mechanism of deoxynucleoside lymphoid toxicity2,3.


Cell Plasma Membrane Adenosine Triphosphatase Double Reciprocal Plot Purine Nucleoside Phosphorylase Calmodulin Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Fox, S. K. Piddington, M. H. N. Tattersall. Ectoadenosine triphosphatase deficiency in cultured human T and Null leukemic lymphocytes. A biochemical basis for thymidine sensitivity. J. Clin. Invest. 68: 544 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    D. A. Carson, J. Kay, S. Matsumoto, J. E. Seegmiller, L. Thompson. Biochemical basis for the enhanced toxicity of deoxyribonucleosides towards malignant human T cell lines. Proc. Natl. Acad. Sci. U.S.A. 76: 2430 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    R. L. Wortman, D. S. Mitchell, N. L. Edwards, I. H. Fox. Biochemical basis for differential deoxyadenosine toxicity to T and B lymphoblasts: Role for 5′ nucleotidase. Proc. Natl. Acad. Sci. U.S.A. 76: 2432 (1979).CrossRefGoogle Scholar
  4. 4.
    R. M. Fox, E. H. Tripp, S. K. Piddington, M. H. N. Tattersall. Sensitivity of leukemic human null lymphocytes to deoxy-nucleosides. Cancer Research. 50: 3383 (1980).Google Scholar
  5. 5.
    J. H. Owen. The determination of the stability constant for Calcium-ETGA. Biochim. Biophys. Acta. 451: 321 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Gietzen, A. Wuthrich, H. Bader. R24571: A new powerful inhibitor of red blood Ca++ transport and of calmodulin regulated functions. Biochem. Biophys. Res. Comm. 101: 418 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    V. Niggli, E. S. Adunyah, J. T. Penniston, E. Carafoli. Purified (Ca++ — Mg++) — ATPase of the erythrocyte membrane. J. Biol. Chem. 256: 395 (1981).PubMedGoogle Scholar
  8. 8.
    D. Kakiuchi, H. Hidaka. Calmodulin and intracellular Ca++ receptors. Plenum Pub. Co. New York (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Richard M. Fox
    • 1
  • Lesley C. Wright
    • 1
  • Gregory H. Reid
    • 1
  1. 1.Ludwig Institute for Cancer Research (Sydney Branch)University of Sydney, N.S.W. 2006Australia

Personalised recommendations