Purine and Pyrimidine Enzyme Markers in Human Lymphoid Malignancies

  • Martin B. Van Der Weyden
  • Lynnette Hallam
  • T. Eng Gan
  • Peter H. Ellims
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 165)


The pertinence to clinical practice of various classifications of human lymphoproliferative disease revolves around whether these arbitrary delineations of tumour properties are predictive either for disease behaviour or responsiveness to various therapeutic modalities and thus prognosis. In this regard the morphologic scheme for non Hodgkin’s lymphoma proposed by the modified Rappaport classification (1) and the utilization of cellular properties which denote the immunologic derivation of tumour cells (2) have both yielded useful frameworks which have clinical utility. To these assessments have recently been added cellular purine and pyrimidine enzymic profiles. These appear to complement the established markers for these disorders but more importantly may have potential therapeutic significance for the use of selective therapy such as adenosine deaminase and purine nucleoside Phosphorylase inhibition (3–5) or the in vivo use of nucleosides such as thymidine (6,7).


Chronic Lymphocytic Leukaemia Thymidine Kinase Adenosine Deaminase Thymidine Phosphorylase Purine Nucleoside Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.W. Berard and R.F. Dorfman. Histopathology of malignant lymphomas. Clin. Haematol. 3: 39 (1976).CrossRefGoogle Scholar
  2. 2.
    C.D. Bloomfield, J. Gajl-Peczalska, G. Frizzera, J.H. Kersey and A.I. Goldman. Clinical utility of lymphocytic surface markers combined with Lukes-Collins histologic classification in adult lymphoma. N. Eng. J. Med. 301: 512 (1979).CrossRefGoogle Scholar
  3. 3.
    C.A. Koller, B.S. Mitchell, M.R. Grever, E. Mejias, L. Malspeis and E.N. Metz. Treatment of acute lymphoblastic leukemia with 2 deoxycoformycin. Clinical and biochemical consequences of adenosine deaminase inhibition. Cancer Treat. Reports 63: 1949 (1979).Google Scholar
  4. 4.
    H.G. Prentice, J.F. Smyth, K. Ganeshaguru, B. Wonke, K. Bradstock, G. Janossy, A. Goldstone and A.V. Hoffbrand. Remission induction with the adenosine deaminase inhibitor 2′deoxycoformycin in Thy-lymphoblastic leukaemia. Lancet ii, 170 (1980).CrossRefGoogle Scholar
  5. 5.
    I.S. Kazmers, B.S. Mitchell, P.E. Daddona, L.L. Wotring, L.B. Townsend and W.N. Kelley. Inhibition of purine nucleoside Phosphorylase by 8 aminoguanosine: Selective toxicity for T lymphoblasts. Science 214: 1137 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    B. Howell, B. Chu, J. Mendelsohn, D.A. Carson, F.H. Kung and J.E. Seegmiller. Thymidine as a chemotherapeutic agent: pharmacologic, cytokinetic and biochemical studies in a patient with T-cell acute lymphocytic leukemia. J. Natl. Cane. Inst. 65: 277 (1980).Google Scholar
  7. 7.
    D.W. Kufe, P. Beardsley, D. Karp, L. Parker, A. Rosowsky, G. Canellos and E. Frei. High-dose thymidine infusions in patients with leukemia and lymphoma. Blood 55: 580 (1980).PubMedGoogle Scholar
  8. 8.
    P.H. Ellims, M.B. Van Der Weyden and G. Medley. Thymidine kinase isoenzymes in malignant lymphoma. Cancer Res. 41: 691 (1981).PubMedGoogle Scholar
  9. 9.
    P.H. Ellims, T.E. Gan, G. Medley and M.B. Van Der Weyden. Prognostic relevance of thymidine kinase isozymes in adult non-Hodgkin’s lymphomas. Blood 58: 926 (1981).PubMedGoogle Scholar
  10. 10.
    P.H. Ellims, T.E. Gan and M.B. Van Der Weyden. Thymidine kinase isoenzymes in chronic lymphocytic leukaemia. Br. J. Haematol.49: 479 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    R.M. Fox, S.K. Piddington, E.H. Tripp, N.P. Dudman and M.H.N. Tattersall. Thymidine sensitivity of cultural leukemic lymphocytes. Lancet 2: 391 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    R.H. Zielke. Isolation of thymidine-resistant cells from a thymidine-sensitive acute lymphoblastic cell line. Cancer Res. 39: 3373 (1979).PubMedGoogle Scholar
  13. 13.
    T.E. Gan, L. Hallam, G.R. Pilkington and M.B. Van Der Weyden. A rapid and simple radiometric assay for thymidine phosphorylase of human peripheral blood cells. Clin. Chim. Acta. 116: 231 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    H.J. Meuwissen, B. Pollara. Combined immunodeficiency and inborn errors of purine metabolism. Blut 37: 173 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    E.R. Giblett, A.J. Amman, D.W. Wara, R. Sandman and L.K. Diamond. Nucleoside Phosphorylase deficiency in a child with severely defective T cell immunity and normal B cell immunity. Lancet 1: 1010 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    W.D. Biggar, E.R. Giblett, R.L. Ozere and D.B. Grover. A new form of nucleoside Phosphorylase deficiency in two brothers with defective T cell function. J. Pediatr. 92: 354 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    B.S. Mitchell, E. Mejias, P.E. Daddona and W.N. Kelley. Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc. Natl. Acad. Sci. USA. 75: 5011 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    M.B. Van Der Weyden and L. Bailey. A micromethod for determining adenosine deaminase and purine nucleoside Phosphorylase activity in cells from human peripheral blood. Clin. Chim. Acta. 82: 179 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Ludwig, R. Kuzmits, H. Pietschmann and M.M. Muller. Enzymes of the purine interconversion system in chronic lymphocytic leukaemia: decreased purine nucleoside Phosphorylase and adenosine deaminase activity. Blut 39: 309 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Blatt, G.H. Reaman, H. Levin and D.G. Poplack. Purine nucleoside Phosphorylase activity in acute lymphoblastic leukemia. Blood 56: 380 (1981).Google Scholar
  21. 21.
    I. Ben-Basset, F. Simoni, F. Holtzman and B. Ramot. Adenosine deaminase activity of normal and leukemic cells. Israel J. Med. Sci. 15: 925 (1980).Google Scholar
  22. 22.
    K. Ganeshaguru, N. Lee, P. Llewellin, H.G. Prentice, A.V. Hoffbrand, D. Catovsky, J.A. Haveshav, J. Robinson and M.F. Greaves. Adenosine deaminase concentration in leukaemia and lymphoma: relationship to cell phenotypes. Leukaemia Res. 5: 215 (1981).CrossRefGoogle Scholar
  23. 23.
    J.F. Smyth, D.G. Poplack, B.J. Holman, B. Leventhal and G. Jarbro. Correlation of adenosine deaminase with cell surface markers in acute lymphoblastic leukaemia. J. Clin. Invest. 59: 710 (1978).CrossRefGoogle Scholar
  24. 24.
    F. Ambrogi, B. Grassi, S. Ronca-Testoni and G. Ronca. Blood lymphocytes in chronic lymphocytic leukaemia and Hodgkin’s disease: immunological features and enzymes of nucleoside metabolism. Clin. Exp. Immunol. 28: 80 (1977).PubMedGoogle Scholar
  25. 25.
    B. Ramot, F. Brook-Simoni, N. Barnea, O. Bank and F. Holtzman. Adenosine deaminase in lymphocytes of normal individuals and patients with chronic lymphocytic leukaemia. Br. J. Haematol. 36: 67 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    T.E. Gan, L. Hallam and M.B. Van Der Weyden. Purine and pyrimidine activities in acute and chronic lymphocytic leukaemia: relation to cellular proliferative status. Leukemia Research (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Martin B. Van Der Weyden
    • 1
  • Lynnette Hallam
    • 1
  • T. Eng Gan
    • 1
  • Peter H. Ellims
    • 1
  1. 1.Department of Medicine Alfred HospitalMonash UniversityPrahranAustralia

Personalised recommendations