S-Adenosylhomocysteine Hydrolase as a Pharmacological Target for the Inhibition of Transmethylation

  • Peter K. Chiang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 165)


S-Adenosylhomocysteine (AdoHcy) hydrolase catalyzes the reversible cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy) (Fig. 1). Although the equilibrium of the reaction is very much in the direction of synthesis, with a Keq of about 10−6 M (1), physiologically the reaction proceeds in the hydrolytic direction because Ado and Hcy are efficiently removed by further metabolism. Ado can either be deaminated to inosine by Ado deaminase or be phosphorylated by Ado kinase to AMP. The Hcy produced is either remethylated to methionine by N5-methyltrahydrofolate-Hcy methyltransferase, or converted to cystathionine after condensation with serine by β-cystathionine synthase.


Thymidine Kinase Pharmacological Target Lupin Seed Beef Liver Keto Butyrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de la Haba and G. L. Cantoni, J. Biol. Chem. 234: 603 (1959).Google Scholar
  2. 2.
    Cantoni, G. L. and P. K. Chiang, in “Natural Sulfur Compounds,” D. Cavallini, G. E. Gaull, and V. Zappia, ed., Plenum Press, New York (1980).Google Scholar
  3. 3.
    Cantoni, G. L., In “The Biochemistry of Adenosylmethionine,” F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman, and F. Schlenk, ed., Columbia University Press, New York (1977).Google Scholar
  4. 4.
    Chiang, P. K., H. H. Richards, and G. L. Cantoni, Mol. Pharmacol. 13: 939 (1977).PubMedGoogle Scholar
  5. 5.
    Chiang, P. K., Y. S. Im, and G. L. Cantoni, Biochem. Biophys. Res. Commun. 94: 174 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    Guranowski, A., J. A. Montgomery, G. L. Cantoni, and P. K. Chiang, Biochemistry 20: 110 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    Kredich, N. M. and D. W. Martin, Jr., Cell 12: 931 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    Montgomery, J. A., S. J. Clayton, H. J. Thomas, W. M. Shannon, G. Arnett, A. J. Bodner, I.-K. Kim, G. L. Cantoni, P. K. Chiang, J. Med. Chem. 25: 626 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    Morita, Y., P. K. Chiang, and R. P. Siraganian, Biochem. Pharmacol. 30: 785 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    Leonard E. J., A. Skeel, P. K. Chiang, and G. L. Cantoni, Biochem. Biophys. Res. Commun. 84: 102 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    Zimmerman, T. P., C. J. Schmitges, G. Wolberg, R. D. Deeprose, G. S. Duncan, P. Cuatrecasas, And G. B. Elion, Proc. Natl. Acad. Sci. U. S. A. 77: 5639 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    Shattil, S. J., J. A. Montgomery, and P. K. Chiang, Blood, 59: 906 (1982).PubMedGoogle Scholar
  13. 13.
    Hirata, F. and J. Axelrod, Science 209: 1082 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    Vance, D. E. and B. de Kruijff, Nature 288: 277 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    Colard, O. and B. Micheline, Biochem. Biophys. Res. Commun. 101: 727 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    Randon, J., T. Lecompte, M. Chignard, W. Siess, G. Marias, F. Dray, and B. B. Vargaftig, Nature 293: 660 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    Schanche, J. S., D. Ogreid, S. O. Doskeland, M. Refsnes, T. E. Sand, P. M. Ueland, and T. Christoffersen, FEBS Lett. 138: 167 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    Aksamit, R. R., W. Falk, and G. L. Cantoni, J. Biol. Chem. 257: 621 (1982).PubMedGoogle Scholar
  19. 19.
    Chiang, P. K., Science 211: 1164 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    Harris, M., Cell, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Peter K. Chiang
    • 1
  1. 1.Division of BiochemistryWalter Reed Army Institute of ResearchUSA

Personalised recommendations