Advertisement

Increased Incidence of Homogeneous Immunoglobulins in Irradiated, Reconstituted Mice After Prolonged Treatment with 2′-Deoxyguanosine

  • Th. W. van den Akker
  • G. Ziere
  • A. P. Gillen
  • J. Radl
  • R. Benner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 165)

Abstract

A homogeneous immunoglobulin component (H-Ig) is the result of excessive immunoglobulin (Ig) production by one of the B cell clones. H-Ig of the transient type appear in the serum of experimental animals after lethal irradiation and reconstitution (1). According to Rozing and Benner (2) the B cell compartment is fully developed about one month and the T cell compartment about 6 months after irradiation and reconstitution. The delayed recovery of T cells might facilitate uncontrolled clonal expansion of B cells (3). Involvement of only a few antigen-reactive B cell clones in an antibody response will be manifested in a restricted heterogeneity of the serum Ig spectrum. Dominance of a single B cell clone can lead to excessive production of a particular Ig, which after serum electrophoresis occurs as a narrow band (H-Ig) in the γ-globulin region.

Keywords

Cell Clone Balance Salt Solution Foetal Liver Lethal Irradiation Serum Electrophoresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Radl, in: Immunological Techniques Applied to Aging Research, W. H. Adler and A. A. Nordin, eds., CRC Press, Boca Raton, Florida, USA, p. 121–139 (1981).Google Scholar
  2. 2.
    J. Rozing and R. Benner, Adv. Exp. Med. Biol. 66: 203–208 (1976).PubMedGoogle Scholar
  3. 3.
    W. B. van Muiswinkel, J. Radl and D. J. van der Wal, Adv. Exp. Med. Biol. 66: 617–621 (1976).PubMedGoogle Scholar
  4. 4.
    H. M. Dosch, A. Mansour, A. Cohen, A. Shore and E. W. Gelfand, Nature 285: 494–496 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Cejka and K. Kithier, Immunochemistry 13: 629–631 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    Th. W. van den Akker, A.T. J. Bianchi, H. Bril and R. Benner, elsewhere in this volume.Google Scholar
  7. 7.
    E. W. Gelfand, J. J. Lee and H. M. Dosch, Proc. Natl. Acad. Sci. USA 76: 1998–2002 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Cohen, L. J. Gudas, A. J. Ammann, G. E. J. Staal and D. W. Martin, Jr., J. Clin. Invest. 61: 1405 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Thelander and P. Reichard, Ann. Rev. Biochem. 48: 133–158 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    D. A. Carson, E. Lakow, D. B. Wasson and N. Kamatani, Immunology Today 2: 234–238 (1981).CrossRefGoogle Scholar
  11. 11.
    A. R. Hayward and D. Merrill, Clin. Exp. Immunol. 45: 468–474 (1981).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Th. W. van den Akker
    • 1
    • 2
  • G. Ziere
    • 1
    • 2
  • A. P. Gillen
    • 1
    • 2
  • J. Radl
    • 1
    • 2
  • R. Benner
    • 1
    • 2
  1. 1.Department of Cell Biology & GeneticsErasmus UniversityRotterdamThe Netherlands
  2. 2.Institute for Experimental GerontologyTNORijswijkThe Netherlands

Personalised recommendations