Advertisement

5′-Methylthioadenosine is the Major Source of Adenine in Human Cells

  • Naoyuki Kamatani
  • Masaru Kubota
  • Erik H. Willis
  • Lee A. Frincke
  • Dennis A. Carson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 165)

Abstract

The thioether nucleoside, 5′-methylthioadenosine (MTA) (Figure 1) is a product of transpropylamine reactions which lead to the synthesis of spermidine and spermine (Figure 2)(1). These polyamines are ubiquitous in mammalian cells (2). Their synthesis, and concomitantly the production of MTA, increases during periods of rapid growth (3). MTA does not accumulate in mammalian cells. Rather, the nucleoside is cleaved by MTA Phosphorylase (5′-methylthiadenosine: orthophosphate methylthioribosyltransferase), to yield adenine and 5-methylthioribose 1-phosphate (Figure 2)(4).

Keywords

Lymphoblastoid Cell Line Adenine Phosphoribosyltransferase Human Lymphoblastoid Cell Line Boronate Affinity Thin Layer Chromatography System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Pegg, and H. G. Williams-Ashman, On the role of S-adenosyl-methionine in the biosynthesis of spermidine by rat prostate., J. Biol. Chem. 244: 682 (1969).PubMedGoogle Scholar
  2. 2.
    C. W. Tabor, and H. Tabor, 1.4-Diaminobutane (putrescine), spermidine and spermine., Annu. Rev. Biochem. 45: 285 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Janne, H. Pösö, and A. Ranina, Polyamines in rapid growth and cancer., Biochim. Biophys. Acta 473: 241 (1978).PubMedGoogle Scholar
  4. 4.
    A. E. Pegg, and H. G. Williams-Ashman, Phosphate-stimulated breakdown of 5′-methylthioadenosine by rat ventral prostate., Biochem. J. 115: 241 (1969).PubMedGoogle Scholar
  5. 5.
    J. B. Wyngaaden, and W. Kelley, Gout, in: “The Metabolic Basis of Inherited Disease” J. B. Stanbury, J. B. Wyngaaden and D. S. Fredrickson, ed., McGraw-Hill, New York (1977).Google Scholar
  6. 6.
    K. J. Van Acker, H. A. Simmonds, C. Potter, and J. S. Cameron, N. Engle. J. Med. 297: 127 (1977).CrossRefGoogle Scholar
  7. 7.
    N. Kamatani, and D. A. Carson, Dependence of adenine production upon polyamine synthesis in cultured human lymphoblasts., Biochim. Biophys. Acta 675: 344 (1981).CrossRefGoogle Scholar
  8. 8.
    N. Kamatani, and D. A. Carson, Abnormal regulation of methylthioadenosine and polyamine metabolism in methylthioadenosine Phosphorylase deficient human leukemic cell lines., Cancer Res, 40: 418 (1980).Google Scholar
  9. 9.
    M. Uziel, L. H. Smith, and S. A. Taylor, Modified nucleosides in urine: Selective removal and analysis, Clin. Chem. 22: 1451 (1976).PubMedGoogle Scholar
  10. 10.
    H. G. Williams-Ashman, and A. Schenone, Methylglyoxal bis (guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylase. Biochem. Biophys. Res. Commun. 46: 288 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    F. F. Snyder, and J. F. Henderson, Alternative pathways of deoxyadenosine and adenosine metabolism. J. Biol. Chem. 248: 5899 (1973).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Naoyuki Kamatani
    • 1
  • Masaru Kubota
    • 1
  • Erik H. Willis
    • 1
  • Lee A. Frincke
    • 1
  • Dennis A. Carson
    • 1
  1. 1.Department of Clinical ResearchScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations