Measuring the Metabolism of the Benthic Ecosystem

  • Mario M. Pamatmat
Part of the NATO Conference Series book series (NATOCS, volume 13)


Determining and modeling the flow of energy and matter in the food web is perceived to be a key to our understanding of the productivity and other properties of the ecosystem (Platt et al., 1981). The measurement of metabolic rates has been a major part of our undertaking to determine energy flow. The oxygen uptake and carbon dioxide production of individual organisms as well as representative samples of communities have been our primary measures of metabolic rates. In the last decade, the activity of the electron transport system (Packard, 1971) has gained popularity and has even been preferred by some (Båmstedt, 1980).


Heat Flow Metabolic Rate Oxygen Uptake Heat Production Metabolic Heat Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, B.I., and Mitchell, M.J., 1980, Role of nematode-bacteirial interactions in heterotrophic systems with emphasis on sewage sluge decomposition, Oikos, 35:404.CrossRefGoogle Scholar
  2. Anderson, R.V., Coleman, D.C., Cole, C.V., and Elliott, E.T., 1981, Effect of the nematodes Acrobeloides sp. and Mesodiplogaster lheritieri on substrate utilization and nitrogen and phosphorus mineralization in soil, Ecology, 62:549.CrossRefGoogle Scholar
  3. Bamstedt, U., 1980, ETS activity as an estimator of respiratory rate of Zooplankton populations. The significance of variations in environmental factors. J. exp. mar. Biol. Ecol., 42:267.CrossRefGoogle Scholar
  4. Boynton, W.R., Kemp, W.M., Osborne, C.G., Kaumeyer, K.R., and Jenkins, M.C., 1981, Influence of water circulation rate on in situ measurements of benthic community respiration, Mar. Biol. 65:185.CrossRefGoogle Scholar
  5. Briggs, K., Tenore, K.R., and Hanson, R., 1979, The role of micro-fauna in detrital utilization by the polychaete, Nereis succinea (Frey and Leuckhart), J. exp. mar. Biol. Ecol., 36:225.CrossRefGoogle Scholar
  6. Findlay, S., and Tenore, K.R., 1982, Effect of free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization, Mar. Ecol. Progr. Ser., 8:161.CrossRefGoogle Scholar
  7. Florkin, M., 1960, “Unity and diversity in biochemistry. An introduction to chemical biology,” Pergamon, London.CrossRefGoogle Scholar
  8. Forrest, W.W., Walker, D.J., and Hopgood, M.F., 1961, Enthalpy changes associated with the lactic fermentation of glucose, J. Bacteriol., 82:685.Google Scholar
  9. Grainger, J.N.R., 1968, The relation between heat production, oxygen consumption and temperature in some poikilotherms in: “Quantitative Biology of Metabolism,” A. Locker, ed., Springer-Verlag, New York.Google Scholar
  10. Hammen, C.S., 1980, Total energy metabolism of marine bivalve mollusks in anaerobic and aerobic states, Comp. Biochem. Physiol. 67A:617.CrossRefGoogle Scholar
  11. Howarth, R.W., and Teal, J.M., 1979, Sulfate reduction in a New England salt marsh, Limriol. Oceanogr., 24:999.CrossRefGoogle Scholar
  12. Hylleberg, J., 1975, Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms, Ophelia, 14:113.CrossRefGoogle Scholar
  13. Jannasch, H.W., 1969, Current concepts in aquatic microbiology, Verb. Internat. Verein. Limnol., 17:25.Google Scholar
  14. Jørgensen, B.B., 1977a, Bacterial sulfate reduction within reduced microniches of oxidized marine sediments, Mar. Biol., 41:7.CrossRefGoogle Scholar
  15. Jørgensen, B.B., 1977b, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr., 22:814.CrossRefGoogle Scholar
  16. Kemp, W.M., and Boynton, W.R., 1981, External and internal factors regulating metabolic rates of an estuarine benthic community, Oecologia (Berl), 51:19.CrossRefGoogle Scholar
  17. Kleiber, M., 1962, “The fire of life. An introduction to animal energetics,” John Wiley, New York.Google Scholar
  18. Kleiber, M., 1965, Respiratory exchange and metabolic rate in: “Handbook of physiology. A critical, comprehensive presentation of physiological knowledge and concepts, vol. II, sec. 3, Respiration,” W.O. Fenn and H. Rahn, eds., Am. Physiol. Soc., Washington, D.C.Google Scholar
  19. McCave, I.N., ed., 1976,“The benthic boundary layer,” Plenum Press, New York.Google Scholar
  20. Nichols, F.H., 1975, Dynamics and energetics of three deposit-feeding benthic invertebrate populations in Puget Sound, Washington, Ecol. Monogr., 45:57.CrossRefGoogle Scholar
  21. Nixon, S.W., Kelly, J.R., Furnas, B.N., Oviatt, C.A., and Hale, S.S., 1980, Phosphorus regeneration and the metabolism of coastal marine bottom communities in: “Marine Benthic Dynamics,” K.R. Tenore, and B.C. Coull, eds., Univ. S. Carolina Press, Columbia.Google Scholar
  22. Packard, T.T., 1971, The measurement of respiratory electron-transport activity in marine phytoplankton, J. mar. Res., 29:235.Google Scholar
  23. Pamatmat, M.M., 1968, Ecology and metabolism of a benthic community on an intertidal sandflat, Int. Rev. ges. Hydrobiol., 53:211.CrossRefGoogle Scholar
  24. Pamatmat, M.M., 1971, Oxygen consumption by the seabed. VI. Seasonal cycle of chemical oxidation and respiration in Puget Sound, Int. Rev. ges. Hydrobiol., 56:769.CrossRefGoogle Scholar
  25. Pamatmat, M.M., 1977, Benthic community metabolism: a review and assessment of present status and outlook in.: “Ecology of Marine Benthos,” B.C. Coull, ed., Univ. S. Carolina Press, Columbia.Google Scholar
  26. Pamatmat, M.M., 1978, Oxygen uptake and heat production in ametabolic conformer (Littorina irrorata) and a metabolic regulator (Uca pugnax), Mar. Biol., 48:317.CrossRefGoogle Scholar
  27. Pamatmat, M.M., 1979, Anaerobic heat production of bivalves (Polymesoda caroliniana and Modiolus demi ssus) in relation to temperature, body size, and duration of anoxia, Mar. Biol., 53:223.CrossRefGoogle Scholar
  28. Pamatmat, M.M., 1980, Facultative anaerobiosis of benthos in: “Marine Benthic Dynamics,” K.R. Tenore, and B.C. Coull, eds., Univ. S. Carolina Press, Columbia.Google Scholar
  29. Pamatmat, M.M., 1982a, Direct calorimetry of benthic metabolism in: “The Dynamic Environment of the Ocean Floor,” K.A. Fanning and F.T. Manheim, eds., Lexington Books, D.C. Heath, Lexington, Mass.Google Scholar
  30. Pamatmat, M.M., 1982b, Heat production by sediment: ecological significance, Science, 215:395.CrossRefGoogle Scholar
  31. Pamatmat, M.M., in press, Simultaneous direct and indirect calorimetry in: “Polarographic Oxygen Sensors: Aquatic and Physiological Applications,” E. Gnaiger and H. Forstner, eds., Springer-Verlag, Berlin.Google Scholar
  32. Pamatmat, M.M., Graf, G., Bengtsson, W., and Novak, C.S., 1981, Heat production, ATP concentration and electron transport activity of marine sediments, Mar. Ecol. -Prog. Ser., 4:135.CrossRefGoogle Scholar
  33. Peakin, G.J., 1973, The measurement of the costs of maintenance in terrestrial poikilotherms: a comparison between respirometry and calorimetry, Experientia, 29:801.CrossRefGoogle Scholar
  34. Platt, T., Mann, K.H., and Ulanowicz, R.E., eds., 1981, “Mathematical Models in Biological Oceanography,” The UNESCO Press, Paris.Google Scholar
  35. Scott, D.M., 1976, Circadian rhythm of anaerobiosis in a polychaete annelid, Nature, 262:811.CrossRefGoogle Scholar
  36. Slobodkin, L.B., 1961, “Growth and regulation of animal populations,” Holt, Rinehart and Winston, New York.Google Scholar
  37. Smith, K.L., Jr., 1973, Respiration of a sublittoral community, Ecology, 54:1065CrossRefGoogle Scholar
  38. Standen, V., 1978, The influence of soil fauna on decomposition by microorganisms in blanket bog litter, J. Anim. Ecol., 47:25.CrossRefGoogle Scholar
  39. Tenore, K.R., 1977, Utilization of aged detritus derived from different sources by the polychaete, Capitella capitata, Mar. Biol., 44:51.CrossRefGoogle Scholar
  40. Tenore, K.R., 1981, Organic nitrogen and caloric content of detritus. I. Utilization by the deposit-feeding polychaete, Capitella capitata, Est. Coast. Shelf Sci., 12:39.CrossRefGoogle Scholar
  41. Tenore, K.R., Tietjen, J., and Lee, J., 1977, Effect of meiofauna on incorporation of aged eelgrass detritus by the polychaete, Nephtys incisa, J. Fish. Res. Board Can., 34:563.CrossRefGoogle Scholar
  42. Vernberg, W.B., Coull, B.C., and Jorgensen, D.D., 1977, Reliability of laboratory metabolic measurements of meiofauna, J. Fish. Res. Board Can., 34:164.CrossRefGoogle Scholar
  43. von Brand, T., 1946, “Anaerobiosis in invertebrates,” Biodynamica, Normandy, Missouri.Google Scholar
  44. Zeitzschel, B., 1980, Sediment-water interactions in nutrient dynamics in: “Marine Benthic Dynamics,” K.R. Tenore and B.C. Coull, eds., Univ. S. Carolina Press, Columbia.Google Scholar
  45. Zeitzschel, B., 1981, Field experiments on benthic ecosystems in: “Analysis of Marine Ecosystems,” A.R. Longhurst, ed., Academic Press, London.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Mario M. Pamatmat
    • 1
  1. 1.Tiburon Center for Environmental StudiesSan Francisco State UniversityTiburonUSA

Personalised recommendations