Functional Types of Marine Planktonic Primary Producers and Their Relative Significance in the Food Web

  • Malte Elbrächter
Part of the NATO Conference Series book series (NATOCS, volume 13)


The process of primary production is restricted to cells with special organelles containing chlorophyll. In the marine pelagic ecosystem the great bulk of organisms showing the ability of primary production are unicellular plants usually called phytoplankton to which this review is restricted. Other types of primary producers, e.g. floating beds of the large brown alga Sargassum or chemosynthetic organisms which might be locally important for the flow of energy and matter in the pelagic ecosystem are not dealt with.


Functional Type Phytoplankton Species Mucus Layer Marine Phytoplankton Cell Covering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldredge, A.L., and Silver, M.W., 1982, Abundance and production rates of floating diatom mats (Rhizosolenia castracanei and R. imbricata var. shrubsolei) in the Eastern Pacific Ocean, Mar. Biol., 66: 83.CrossRefGoogle Scholar
  2. Anonymous, 1975, Proposals for a standarization in diatom terminology and diagnosis, Nova Hedwigia, Beih., 53: 323.Google Scholar
  3. Aubert, M., Gauthier, M. and Bernhard, P., 1980, Les systemes d’information des microorganismes marins, Revue Intern. L’Océan. Médic., 21: 1.Google Scholar
  4. Baars, J.W.M., 1981, Autecological investigations on marine diatoms. 2. Generation times of 50 species, Hydrobiol. Bull., 15: 137.CrossRefGoogle Scholar
  5. Baden, D.G., and Mende, T.J., 1978, Glucose transport and metabolism in Gymnodinium breve, Phytochemistry, 17: 1553.CrossRefGoogle Scholar
  6. Banse, K., 1976, Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size — A review, J. Phycol. 12: 135.Google Scholar
  7. Bates, S.S., 1976, Effects of light and amonium on nitrate uptake by two species of estuarine phytoplankton, Limnol. Oceanogr., 21: 212.CrossRefGoogle Scholar
  8. Bé, A.W.H., Hemleben, C., Anderson, O.R., Spindler, M., Hacundra, J., and Tuntivate, S., 1977, Laboratory and field observations of living planktonic foraminifera, Micropaleont., 23:155.CrossRefGoogle Scholar
  9. Bienfang, P.K., 1980, Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA, Mar. Biol., 61: 69.CrossRefGoogle Scholar
  10. Bienfang, P.K., Harrison, P.J., and Quarmby, L.M., 1982, Sinking rate responses to depletion of nitrate, phosphate and silicate in four marine diatoms, Mar. Biol., 67: 295.CrossRefGoogle Scholar
  11. Boalch, G.T., and Harbour, D.S., 1977, Unusual diatom off the coast of South-West England and its effect on fishing, Nature 269: 687.CrossRefGoogle Scholar
  12. Bold, H.C., and Wynne, M.J., 1978, “Introduction to the algae,” Prentice Hall, Englewood Cliffs, N.J.Google Scholar
  13. Bouck, G.B., 1971, The structure, origin, isolation and composition of the tubular mastigonemes of the Ochromonas flagellum, J. Cell. Biol., 50: 362.CrossRefGoogle Scholar
  14. Bouck, G.B., 1972, Architecture and assembly of mastigonemes, Adv. Cell Molec. Biol., 2: 237.Google Scholar
  15. Brand, L.E., Murphy, L.S., Guillard, R.R.L., and Lee, H. -T., 1981, Genetic Variability and differentiation in the temperature niche component of the diatom Thallassiosira pseudonana, Mar. Biol., 62: 103.CrossRefGoogle Scholar
  16. Carlucci, A.F., and Bowes, P.N., 1970, Vitamin production and utilization by phytoplankton in mixed culture, J. Phycol., 6: 394.Google Scholar
  17. Drebes, G., 1977, Sexuality, in: “The biology of diatoms,” D. Werner, ed., Blackwell, Oxford.Google Scholar
  18. Droop, M.R., 1954, A note on the isolation of small marine algae and flagellates for pure cultures, J. Mar. Biol. Ass. U.K., 33: 511.CrossRefGoogle Scholar
  19. Droop, M.R., 1974, The nutrient status of algae in continuous culture, J. Mar. Biol. Ass. U.K., 54: 825.CrossRefGoogle Scholar
  20. Droop, M.R., 1975, The nutrient status of algal cells in batch culture, J. Mar. Biol. Ass. U.K., 55: 541.CrossRefGoogle Scholar
  21. Dürr, G., 1979, Elektronenmikroskopische Untersuchungen am Panzer von Dinoflagellaten II Peridinium cinctum, Arch. Protistenk., 122: 88.CrossRefGoogle Scholar
  22. Elbrächter, M., 1977, On population dynamics in multi-species cultures of diatoms and dinoflagellates, Helgoländer wiss. Meeresunters., 30: 192.CrossRefGoogle Scholar
  23. Elbrächter, M., and Boje, R., 1978, On the ecological significance of Thalassiosira partheneia in the Northwest African upwelling area, in: “Upwelling ecosystems,” R. Boje and M. Tomczak, eds., Springer, Berlin, Heidelberg, New York.Google Scholar
  24. Eppley, R.W., 1972, Temperature and phytoplankton growth in the sea, Fishery Bull. 70: 1063.Google Scholar
  25. Eppley, R.W., Holm-Hansen, O., and Strickland, J.D.H., 1968, Some observations on the vertical migration of dinoflagellates, J. Phycol. 4: 333.CrossRefGoogle Scholar
  26. Ettl, H., 1980, “Grundriß der allgemeinen Algologie,” G. Fischer, Stuttgart.Google Scholar
  27. Falkowski, P.G., 1977, A theoretical description of nitrate uptake kinetics in marine phytoplankton based on bisubstrate kinetics, J. theor. Biol., 64: 375.CrossRefGoogle Scholar
  28. Falkowski, P.G., and Owens, T.G., 1980, Light-shade adaptation. Two strategies in marine phytoplankton, Pl. Physiol., 66: 592.CrossRefGoogle Scholar
  29. Fedorov, V.D., and Kustenko, N.G., 1972, Competition between marine planktonic diatoms in monoculture and mixed culture, Oceanology, 12: 91.Google Scholar
  30. Fenchel, T., 1982, a, Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology, Mar. Ecol. Prog. Ser. 8: 211.CrossRefGoogle Scholar
  31. Fenchel, T., 1982 b, Ecology of heterotrophic microflagellates. II Bioenergetics and growth, Mar. Ecol. Prog. Ser. 8: 225.CrossRefGoogle Scholar
  32. Forward, Jrn. R.B., 1976, Light and diurnal vertical migration: Photobehaviour and photophysiology of plankton, in.: “Photochemical and Photobiological Reviews,” K.C. Smith, ed., Plenum Press, New York.Google Scholar
  33. Frost, B.W., 1980, Grazing, in: “The physiological ecology of phyto-plankton,” I. Morris, ed., Blackwell, Oxford.Google Scholar
  34. Gallegos, C.L., Hornberger, G.M., and Kelly, M.G., 1980, Photo-synthesis-light relationships of a mixed culture of phyto-plankton in fluctuating light, Limnol. Oceanogr., 25: 1082.CrossRefGoogle Scholar
  35. Goldman J.C., and Glibert P.M., 1982, Comparative rapid ammonium uptake by four marine phytoplankton species, Limnol. Oceanogr., 27: 814.CrossRefGoogle Scholar
  36. Gran, H.H., 1912, Pelagic plant life, in: “The depth of the ocean,” J. Murray and H. Hjort, ed., MacMillan, London.Google Scholar
  37. Hardy, J.T., and Valett, M., 1981, Natural and microcosm phyto-neuston communities of Sequin Bay, Washington, Estuarine, Coastal and Shelf Science, 12: 3.CrossRefGoogle Scholar
  38. Hasle, G.R., 1954, More on phototactic diurnal migration in marine dinoflagellates, Nytt Magasin for Botanikk, 2: 139.Google Scholar
  39. Hellebust, J.A., and Lewin, J., 1977, Heterotrophic nutrition, in: “The biology of diatoms,” D. Werner, ed., Blackwell, Oxford.Google Scholar
  40. Hibberd, D.J., 1977, Observations on the ultrastructure of the cryptomonad endosymbiont of the red-water ciliate Mesodinium rubrum, J. Mar. Biol., Ass. U.K., 57: 45.CrossRefGoogle Scholar
  41. Horstmann, U., 1981, Observations on the peculiar diurnal vertical migration of a red tide Dinophyceae in tropical shallow waters, J. Phycol., 16: 481.CrossRefGoogle Scholar
  42. Hulburt, E.M., 1957, The taxonomy of unarmored Dinophyceae of shallow embayments on Cape Cod, Massachusetts, Biol. Bull. 112: 196.CrossRefGoogle Scholar
  43. Huntsman, S.A., and Sunda, W.G., 1980, The role of trace metals in regulating phytoplankton growth, in: The physiological ecology of phytoplankton, I. Morris, ed., Blackwell, Oxford.Google Scholar
  44. Hustedt, F., 1930, Die Kieselalgen Deutschlands, Osterreichs und Scweiz mit Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebiete, in “Dr. L. Rabenhorst’s Krypto-gamenflorra,” Bd. 7, L. Rabenhorst, ed., Akad. Verl. -Ges., Leipzig.Google Scholar
  45. Jerlov, N.G., 1968, “Optical Oceanography,” Elsevier Oceanography Series, 5, Elsevier, Amsterdam.CrossRefGoogle Scholar
  46. Jørgensen, E.G., 1968, The adaptation of plankton algae. II. Aspects of the temperature adaptation of Skeletonema costatum, Physiol. Plant., 21: 423.CrossRefGoogle Scholar
  47. Kahn, N., and Swift, E., 1978, Positive buoyancy through ionic control in the nonmotile marine dinoflagellate Pyrocystis noctiluca Murray ex Schutt, Limnol. Oceanogr., 23: 649.CrossRefGoogle Scholar
  48. Kamykowski, D., 1981, Dinoflagellate growth rate in water columns of varying turbidity as a function of migration phase with daylight, J. Plankton Res. 3: 357.CrossRefGoogle Scholar
  49. Kofoid, C.A., and Swezy, O., 1921, “The free-living unarmored Dino-flagellata,” Mem. Univ. Calif., 5: 1.Google Scholar
  50. Lange, O.L., Nobel, P.S., Osmond, C.B., and Ziegler, H., Eds., 1981, “Physiological Plant Ecology I. Responses to the physical environment,” Springer, Berlin, Heidelberg, New York.Google Scholar
  51. Leblond, P.H., and Taylor, F.J.R., 1976, The propulsive mechanisms of the dinoflagellate transverse flagellum reconsidered, Biosystems, 8: 33.CrossRefGoogle Scholar
  52. Li, W.K.W., 1980, Temperature adaption in phytoplankton: Cellular and photosynthetic characteristics, in: “Primary productivity in the sea,” P.G. Falkowski, ed., Plenum, New York, London.Google Scholar
  53. Lüning, K., 1981, Light, in: “The Biology of sea weeds,” C.S. Lobban and M.J. Wynne, ed., Blackwell, Oxford.Google Scholar
  54. MacIsaac, J. J., and Dugdale, R.C., 1972, Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea, Deep Sea Res., 19: 209.Google Scholar
  55. Malone, T.C., 1980, Algal size, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.Google Scholar
  56. McCarthy, J.J., 1980, Nitrogen, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.Google Scholar
  57. Morey-Gaines, G., and Elbrächter, M., in press, in: “The biology of dinoflagellates,” F.J.R. Taylor, ed., Blackwell, Oxford.Google Scholar
  58. Morris, I. Ed., 1980, “The physiological ecology of phytoplankton,” Blackwell, Oxford.Google Scholar
  59. Nalewajko, C., and Lean, D.R.S., 1980, Phosphorus, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.Google Scholar
  60. Norkrans, B., 1980, Surface microlayers in aquatic environments, in: “Advances in microbial ecology,” Vol. 4, M. Alexander, ed., Plenum, New York, London.Google Scholar
  61. Paasche, E., 1980, Silicon, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.Google Scholar
  62. Packard, T.T., Blasco, D. and Barber, R.T., 1978, Mesodinium rubrum in the Baja California Upwelling system, in: “Upwelling systems,” R. Boje and M. Tomczak, eds., Springer, Berlin, Heidelberg, New York.Google Scholar
  63. Paffenhöfer, G. -A., Strickler, J.R., and Alcaraz, M., 1982, Suspension feeding by herbivorous calanoid copepods: a cinematographic study, Mar. Biol., 67: 193.CrossRefGoogle Scholar
  64. Perry, M.J., Talbot, M. C., and Alberte, R.S., 1981, Photoadaption in marine phytoplankton, responses to the photosynthetic unit, Mar. Biol., 62: 91.CrossRefGoogle Scholar
  65. Pintner, I.J., and Altmyer, V.L., 1973, Production of Vitamin B12 binder by marine phytoplankton, J. Phycol. (suppl.) 9: 13.Google Scholar
  66. Pintner, I.J., and Altmyer, V.L., 1979, Vitamin B12 binder and other algal inhibitors, J. Phycol., 15: 391.Google Scholar
  67. Platt, T. Ed., 1981, “Physiological bases of phytoplankton ecology,” Can. Bull. Fish. Aquat. Sci., 210: 1.Google Scholar
  68. Pollingher, U., and Zemel, E., 1981, In situ and experimental evidence of the influence of turbulence on cell division processes of Peridinium cineturn forma westii (Lemm.) Lefèvre, Br. phycol. J., 16: 281.CrossRefGoogle Scholar
  69. Raven, J.A., 1980, Nutrient transport in microalgae, in: “Advances in microbial physiology,” A.H. Rose and J.G. Morris, eds., Academic Press, London.Google Scholar
  70. Richardson, K., and Fogg, G.E., 1982, The role of dissolved organic material in the nutrition and survival of marine dinoflagellates, Phycologia 21: 17.CrossRefGoogle Scholar
  71. Savidge, G., 1980, Photosynthesis of marine phytoplankton in fluctuating light regimes, Mar. Biol. Letters, 1: 295.Google Scholar
  72. Schmid, A.M., and Schulz, D., 1979, Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles, Protoplasma, 100: 267.CrossRefGoogle Scholar
  73. Schmid, A.M., Borowitzka, M.A., and Volcani, B.E., 1982, Morphogenesis and Biochemistry of diatom cell walls, in: “Cell biology monographs,” Vol. 8, O. Kiermayer, ed., Springer, Wien, New York.Google Scholar
  74. Schöne, H., 1970, Untersuchungen zur ökologischen Bedeutung des Seegangs für das Plankton mit besonderer Berücksichtigung mariner Kieselalgen, Int. Revue ges. Hydrobiol. 55: 595.CrossRefGoogle Scholar
  75. Schöne, H.K., 1972, Experimentelle Untersuchungen zur Ökologie der marinen Kieselalge Thalassiosira rotula. I. Temperatur und Licht, Mar. Biol., 13: 284.CrossRefGoogle Scholar
  76. Schütt, F., 1982, Das Pflanzenleben der Hochsee, Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, 1 (A): 243.Google Scholar
  77. Sieburth, J. McN., Willis, P.J., Johnson, K.M., Burney, C.M., Lavoie, D.M., Hinga, K.R., Caron, D.A., French, F.W., Johnson, P.W., and Davis, P.G., 1976, Dissolved organic matter and heterotrophic Microneuston in the surface microlayers of the North Atlantic, Science 194: 1415.CrossRefGoogle Scholar
  78. Silva, E.S., 1965, Note on some cytophysiological aspects in Prorocentrum micans Ehrenb. and Goniodoma pseudogoniaulax Biech., Notas e Est. do I.B.M., 30: 3.Google Scholar
  79. Smayda, T.J., 1958, Biogeographical studies of marine phytoplankton. Oikos, 9:158.CrossRefGoogle Scholar
  80. Smayda, T.J., 1970, The suspension and sinking of phytoplankton in the sea, Oceanography and Marine Biology 8: 353.Google Scholar
  81. Sournia, A., 1974, Circadian periodicities in natural populations of marine phytoplankton, Adv. Mar. Biol., 12: 325.CrossRefGoogle Scholar
  82. Sournia, A., 1981, Morphological bases of competition and succession, Can. Bull. Fish. Aquat. Sci., 210: 339.Google Scholar
  83. Sournia, A., 1982, Form and function in marine phytoplankton, Biol. Rev., 57: 347.CrossRefGoogle Scholar
  84. Sournia, A., 1982, Is there a shade flora in the marine plankton? J. Plankt. Res., 4: 391CrossRefGoogle Scholar
  85. Staker, R.D., and Bruno, S.F., 1980, Diurnal vertical migration in marine phytoplankton, Bot. Marina, 23: 167.CrossRefGoogle Scholar
  86. Steeman Nielsen, E., 1975, “Marine photosynthesis,” Elsevier Oceanography Series, 13, Elsevier, Amsterdam.Google Scholar
  87. Steidinger, K.A., Tester, L.S., and Taylor, F.J.R., 1980, A redescription of Pyrodinium bahamense var. compressa (Bohm) stat. nov. from Pacific red tides, Phycologia, 19: 329.CrossRefGoogle Scholar
  88. Stosch, H.A. von, 1956, Abgeschlossene Hohlraumsysterne mit semipermeablen Wänden als Strukturelemente von Diatomeenschalen, Ber. Deutsche Bot. Ges. 69: 99.Google Scholar
  89. Stosch, H.A. von, 1964, Zum Problem der sexuellen Fortpflanzung in der Peridineengattung Ceratium, Helgol. wiss. Meeresunters. 10: 140.CrossRefGoogle Scholar
  90. Stosch, H.A. von, 1980, The “endochiastic areola”, a complex new type of siliceous structures in a diatom, Bacillaria, 3: 21.Google Scholar
  91. Swift, D.G., 1980, Vitamins and phytoplankton growth, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.Google Scholar
  92. Taylor, D.L., and Seliger, H.H., Eds., 1979, “Toxic dinoflagellate blooms,” Elsevier, New York, Amsterdam, Oxford.Google Scholar
  93. Taylor, F.J.R., 1976, Flagellate phylogeny: a study in conflicts, J. Protozool. 23: 28.Google Scholar
  94. Throndsen, J., 1973, Motility in some marine nanoplankton flagellates, Norw. J. Zool., 21: 193.Google Scholar
  95. Throndsen, J., 1979, The significance of ultraplankton in marine primary production, Acta Bot. Fennica, 110: 53.Google Scholar
  96. Vince-Prue, D., 1975, “Photoperiodism in plants,” McGraw-Hill, London.Google Scholar
  97. Walsby, A.F., and Reynolds, C.S., 1980, Sinking and floating, in: “The physiological ecology of phytoplankton,” I. Morris, ed., Blackwell, Oxford.Google Scholar
  98. Wandschneider, K., 1979, Vertical distribution of phytoplankton during investigations of a natural surface film, Mar. Biol. 52: 105.CrossRefGoogle Scholar
  99. White, A.W., 1976, Growth inhibition caused by turbulence in the toxic marine dinoflagellate Gonyaulax excavata, J. Fish. Res. Board Can., 33: 2598.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Malte Elbrächter
    • 1
  1. 1.Litoralstation ListBiologische Anstalt HelgolandList/SyltGermany

Personalised recommendations