Advertisement

Oceanic Nutrient Cycles

  • Joel C. Goldman
Part of the NATO Conference Series book series (NATOCS, volume 13)

Abstract

The perception that the euphotic zone of nutrient-impoverished oceanic waters is a steady state system has been based, to a large extent, on the choice of temporal and spatial scales upon which the pertinent biological and chemical measurements typically are made. For example, subsamples obtained from well-mixed, large volume samples (liters to tens of liters) commonly are used at sea both for a variety of analytical measurements and for long-term (tens of hours) bottle incubations to determine rates of primary production and nutrient turnover. The results of such measurements consistently demonstrate that nutrient concentrations in oligotrophic surface waters are below detection limits (Carpenter and McCarthy, 1975; McCarthy and Carpenter, 1979), and that both standing stocks of primary and secondary producers and rates of biological activity are uniformly low (Eppley et al., 1973).

Keywords

Relative Growth Rate Euphotic Zone Marine Phytoplankton Nutrient Regeneration Oligotrophic Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alldredge, A.L., and Cox, J.L., 1982, Primary productivity and chemical composition of marine snow in surface waters of the Southern California Bight, J. Mar. Res., 40: 517.Google Scholar
  2. Alldredge, A.L., and Silver, M.W., 1982, Abundance and production rates of floating diatom mats (Rhizosolenia castracanei and R. imbricata var. shrubsolei) in the Eastern Pacific Ocean, Mar. Biol. 66: 83.CrossRefGoogle Scholar
  3. Allen, T.F.H., 1977, Scale in microscopic algal ecology: a neglected dimension, Phycologia, 16:253.CrossRefGoogle Scholar
  4. Azam, F., In press, Measurement of growth of bacteria in the sea and the regulation of growth by environmental conditions, in: “Heterotrophic Activity in the Sea,” J. Hobbie and P. J. LeB. Williams, eds., Plenum Press, New York.Google Scholar
  5. Azam, F., and Hodson, R.E., 1977, Size distribution and activity of marine microheterotrophs, Limnol. Oceanogr., 22: 492.CrossRefGoogle Scholar
  6. Barsdate, B.J., Prentki, R.T., and Fenchel, T., 1974, Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers, Oikos, 25: 239.CrossRefGoogle Scholar
  7. Baylor, E.R., Sutcliffe, W.H., and Hirschfield, D.S., 1962, Adsorption of phosphate onto bubbles, Deep Sea Res., 9:120.Google Scholar
  8. Beers, J.R., Reid, F.M.H., and Stewart, G.L., 1982, Seasonal abundance of the microplankton population in the North Pacific central gyre, Deep Sea. Res., 29:227.CrossRefGoogle Scholar
  9. Berman, T., 1975, Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake, Mar. Biol., 33:215.CrossRefGoogle Scholar
  10. Bishop, J.K.B., Ketten, D.R. and Edmond, J.M., 1978, The chemistry biology and vertical flux of particulate matter from the upper 400 m of the Cape Basin in the southeast Atlantic ocean, Deep Sea Res., 25:1121.CrossRefGoogle Scholar
  11. Bishop, J.K.B., Collier, R.W., Ketten, D.R., and Edmond, J.M., 1980, The chemistriy, biology and vertical flux of particulate matter from the upper 1500 m of the Panama Basin, Deep Sea Res., 27:615.CrossRefGoogle Scholar
  12. Booth, B.C., Lewin, J. and Norris, R.E., 1982, Nanoplankton species predominant in the subartic Pacific in May and June 1978, Deep Sea Res., 29:185.CrossRefGoogle Scholar
  13. Brand, L.E., and Guillard, R.R.L., 1981, The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton, J. exp. mar. Biol. Ecol., 50:119.CrossRefGoogle Scholar
  14. Caperon, J., Schell, D., Hirota, T., and Laws, E., 1979, Ammonium excretion rates in Kaneohe Bay, Hawaii, measured by a 15N isotope dilution technique, Mar. Biol., 54: 33.CrossRefGoogle Scholar
  15. Carder, K.L., 1979, Holographic microvelocimeter for use in studying ocean particle dynamics Opt. Eng., 18: 524.Google Scholar
  16. Carder, K.L., Steward, R.G., and Betzer, P.R., 1982, In situ holographic measurements of the sizes and settling rates of oceanic particulates, J. Geophys. Res., 87:5681.CrossRefGoogle Scholar
  17. Caron, D.A., Davis, P.G., Madin, L.P., and Dieburth, J. McN., 1982 Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates, Science.Google Scholar
  18. Carpenter, E.J., and McCarthy, J.J., 1975, Nitrogen fixation and uptake of combined nitrogenous nutrients by Oscillatoria (Trichodesmium) thiebautii in the western Sargasso Sea, Limnol. Oceanogr., 20: 389.CrossRefGoogle Scholar
  19. Carpenter, E.J., and Price, C.C., 1977, Nitrogen fixation, distribution, and production of Oscillatoria (Trichodesmium) spp. in the western Sargasso and Caribbean Seas, Limnol. Oceanogr., 22: 389.Google Scholar
  20. Carpenter, E.J., Harbison, G.R., Madin, L.P., Swanberg, N.R., Biggs, D.C., Hulbert, E.M., McAlister, V.L., and McCarthy, J.J., 1977, Rhizosolenia mats, Limno1. Oceaogr., 22: 739.CrossRefGoogle Scholar
  21. Cauwet, G., 1978, Organic chemistry of sea water particulates. Concepts and developments, Oceanologica Acta, 1: 99.Google Scholar
  22. Churchward, G., Bremer, H. and Young, R., 1982, Macromolecular composition of bacteria, J. Theor. Biol., 94: 651.CrossRefGoogle Scholar
  23. Cooper, L.H.N., 1933, Chemical constituents of biological importance in the English Channel, Pt. I. Phosphate, silicate, nitrate, nitrite, ammonia, J. Mar. Biol. Assoc. U.K., 23: 171.Google Scholar
  24. Curds, C.R., 1971, A computer-simulation study of predator-prey relationships in a single-stage continuous-culture system, Water Res., 5: 793.CrossRefGoogle Scholar
  25. Dawson, M.P., Humphrey, B.A., and Marshallm K.C., 1981, Adhesion: A tactic in the survival strategy of a marine vibrio during starvation, Current Microbiol., 6: 195–199.CrossRefGoogle Scholar
  26. Ellwood, D.C., Keevil, C.W., Marsh, P.D., Brown, C.M., and Wardell, J.N., 1982, Surface-associated growth, Phil. Trans. R. Soc. Lond., B297: 517.Google Scholar
  27. Eppley, R.W., 1972, Temperature and phytoplankton growth in the sea, Fish. Bull., 70:1063.Google Scholar
  28. Eppley, R.W., and Peterson, B.J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282: 677.CrossRefGoogle Scholar
  29. Eppley, R.W., Renger, E.H., Venrick, E.L., and Mullin, M.M., 1973, A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean, Limnol. Oceanogr., 18: 534.CrossRefGoogle Scholar
  30. Esener, A.A., Roels, J.A., and Kossen, N.W.F., 1982, Dependence of the elemental composition of K. pneumoniae on the steady-state specific growth rate, Biotechnol. Bioeng., 24: 1445.CrossRefGoogle Scholar
  31. Fenchel, T., 1982a, Ecology of Heterotrophic microflagellates. I. Some important forms and their functional morphology, Mar. Ecol. Prog. Ser. 8:211.CrossRefGoogle Scholar
  32. Fenchel, T., 1982b, Ecology of heterotrophic microflagellates. II. Bioenergetics and growth, Mar. Ecol. Prog. Ser., 8: 225.CrossRefGoogle Scholar
  33. Fenchel, T., and Harrison P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: “The Role of Terrestrial and Aquatic Organisms in Decomposition Processes,” J.M. Anderson and A. Macfadyen, eds., Blackwell Scientific Publications, Oxford.Google Scholar
  34. Gallager, S.M., and Mann, R., 1981, The effect of varying carbon/ nitrogen ratio in the phytoplankter Thalassiosira pseudonana (3H) on its food value to the bivalve Tapes Japonica, Aquaculture, 26: 95.CrossRefGoogle Scholar
  35. Gavis, J., 1976, Munk and Riley revisited: nutrient diffusion transport and rates of phytoplankton growth, J. Mar. Res., 34: 161.Google Scholar
  36. Glibert, P.M., 1982, Regional studies of daily, seasonal, and size fraction variability in ammonium remineralization, Mar. Biol., 70: 209.CrossRefGoogle Scholar
  37. Glibert, P.M. and Goldman, J.C., 1981, Rapid ammonium uptake by marine phytoplankton, Mar. Biol. Lett., 2: 25.Google Scholar
  38. Goldman, J.C., 1980, Physical processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed. Plenum Press, New York.Google Scholar
  39. Goldman, J.C., and Glibert, P.M., 1982, Comparative rapid ammonium uptake by four species of marine phytoplankton, Limnol. Oceanogr., 27: 814.CrossRefGoogle Scholar
  40. Goldman, J.C., and Stanley, H.I., 1974, Relative growth of different species of marine algae in wastewater-seawater mixtures, Mar. Biol., 28: 17.CrossRefGoogle Scholar
  41. Goldman J.C., and McCarthy, J.J., 1978, Steady state growth and ammonium uptake of a fast-growing marine diatom, Limnol. Oceanogr., 23: 695.CrossRefGoogle Scholar
  42. Goldman, J.C., McCarthy, J.J., and Peavey, D.G., 1979, Growth rate influence on the chemical composition of phytoplankton in oceanic waters, Nature, 279:210.CrossRefGoogle Scholar
  43. Goldman, J.C., Taylor, C.D., and Glibert, P.G., 1981a, Nonlinear time-course uptake of carbon and ammonium by marine phytoplankton, Mar. Ecol. Prog. Ser., 6: 137.CrossRefGoogle Scholar
  44. Goldman, J.C., Dennett, M.R., and Riley, C.B., 1981b, Inorganic carbon sources and biomass regulation in intensive microalgal cultures, Biotechnol. Bioeng., 23: 995.CrossRefGoogle Scholar
  45. Gordon, D.R. Jr., 1970, A microscopic study of organic particles in the North Atlantic Ocean, Deep Sea Res., 17:175.Google Scholar
  46. Gordon, D.C. Jr., Wangersky, P.J., and Sheldon, R.W., 1979, Detailed observations on the distribution and composition of particulate organic material at two stations in the Sargasso Sea, Deep Sea Res., 26: 1083.CrossRefGoogle Scholar
  47. Haas, L.W., and Webb, K.L., 1979, Nutritional mode of several non- pigmented microflagellates from the York River Estuary, Virginia, J. exp. mar. Biol. Ecol., 39: 125.CrossRefGoogle Scholar
  48. Harris, G.P., 1980, Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, and management, Can. J. Fish. Aquat. Sci., 37: 877.CrossRefGoogle Scholar
  49. Harris, R.H., and Mitchell, R., 1973, The role of polymers in microbial aggregations, Ann. Rev. Microbiol., 27: 27.CrossRefGoogle Scholar
  50. Harrison, W.G., 1978, Experimental measurements of nitrogen re-mineralization in coastal waters, Limnol. Oceanogr., 23: 684.CrossRefGoogle Scholar
  51. Harrison, W.G., 1980, Nutrient regeneration and primary production in the sea, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  52. Harvey, G.W., 1966, Microlayer collection from the sea surface: a new method and initial results, Limno1. Oceanogr., 11: 608.CrossRefGoogle Scholar
  53. Herbert, D., Elsworth, R., and Telling, R.C., 1956, The continuous culture of bacteria; a theoretical and experimental study, J. Gen. Microbiol., 14: 601.Google Scholar
  54. Herbland, A., and LeBouteiller, A., 1981, The size distribution of phytoplankton and particulate organic matter in the Equatorial Atlantic Ocean: Importance of ultraseston and consequences, J. Plankton Res., 3: 659.CrossRefGoogle Scholar
  55. Jackson, G.A., 1980, Phytoplankton growth and Zooplankton grazing in oligotrophic waters, Nature, 284: 439.CrossRefGoogle Scholar
  56. Jannasch, H.W., 1979, Microbial ecology of aquatic low nutrient habitats, in: “Strategies of Microbial Life in Extreme Environments”, M. Shilo, ed., Dahlem Konferenzen, Berlin.Google Scholar
  57. Jannasch, H.W., and Pritchard, P.H., 1972, The role of inert particulate matter in the activity of aquatic microorganisms, Mem Ist Ital. Idrobiol. Suppl., 29: 289.Google Scholar
  58. Johannes, R.E., 1965, The influence of marine protozoa on nutrient regeneration, Limnol. Oceanogr., 10: 434.CrossRefGoogle Scholar
  59. Johnson, B.D., 1976, Nonliving organic particle formation from bubble dissolution, Limnol. Oceanogr., 21: 444.CrossRefGoogle Scholar
  60. Johnson, B.D., and Cooke, R.C., 1980, Organic particle and aggregate formation resulting from the dissolution of bubbles in sea-water, Limnol. Oceanogr., 25: 653.CrossRefGoogle Scholar
  61. Johnson, P.W., and Sieburth, J. McN., 1979, Chroococcoid cyano-bacteria in the sea: A ubiquitous and diverse phototrophic biomass, Limnol. Oceanogr., 24: 928.CrossRefGoogle Scholar
  62. Kelley, J.C., 1976, Sampling the sea, in: “The Ecology of the Seas,” D.H. Cushing and J.J. Walsh, eds., W.B. Saunders Co, Philadelphia.Google Scholar
  63. Ketchum, B.H., Ryther, J.H., Yentsch, C.S., and Corwin, N., 1958, Productivity in relation to nutrients, Cons. Internat. Explor. Mer. Rapp. and Proces. Verb., 144: 132.Google Scholar
  64. Kjelleberg, S., Humphrey, B.A., and Marshall, K.C., 1982, Effect of interfaces on small, starved marine bacteria, Appl. Environ. Microbiol., 43: 1166.Google Scholar
  65. Kimor, B. 1981, The role of phagotrophic dinoflagellates in marine ecosystems, Kieler Meeresforsch. Sondern., 5: 164.Google Scholar
  66. Koch, A.L., 1971, The adaptive responses, of Escherichia coli to a feast or famine existence, Adv. Microbiol. Ecol., 6: 147.Google Scholar
  67. Koch, A.L., 1979, Microbial growth in low concentrations of nutrients, in: “Strategies of Microbial Life in Extreme Environments,” M. Shilo, ed., Dahlem Konferenzen, Berlin.Google Scholar
  68. Larsen, D.H., and Dimmick, R.L., 1964, Attachment and growth of bacteria on surfaces of continuous-culture vessels, J. Bacteriol. 88: 1380.Google Scholar
  69. Laws, E.A., and Bannister, T.T., 1980, Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean, Limnol. Oceanogr., 25: 457.CrossRefGoogle Scholar
  70. Lehman, J.T., and Scavia, D., 1982a, Microscale patchiness of nutrients in plankton communities, Science, 216: 729.CrossRefGoogle Scholar
  71. Lehman, J.T., and Scavia, D., 1982b, Microscale nutrient patches produced by Zooplankton, Proc. Natl. Acad. Sci. USA, 79: 5001.CrossRefGoogle Scholar
  72. Linley, E.A.S., and Field, J.G., 1982, The nature and ecological significance of bacterial aggregation in a nearshore upwelling ecosystem, Estuar. Coast. Shelf Sci., 14:1CrossRefGoogle Scholar
  73. Maestrini, S.Y., and Bonin, D.J., 1981, Competition among phytoplankton based on inorganic macronutrients, in: “Physiological Bases of Phytoplankton Ecology,” T. Platt, ed., Bulletin 210, Canadian Bulletin of Fisheries and Aquatic Sciences, Ottawa.Google Scholar
  74. Marshall, K.C., 1976, “Interfaces in Microbial Ecology,” Harvard University Press, Cambridge, Mass.Google Scholar
  75. McCarthy, J.J., and Carpenter, E.J., 1979, Oscillatoria (Trichodesmium) thiebautii (cyanophyta) in the central North Atlantic Ocean, J. Phycol., 15: 75.CrossRefGoogle Scholar
  76. McCarthy, J.J., and Goldman, J.C., 1979, Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters, Science, 203: 670.CrossRefGoogle Scholar
  77. Manzel, D.W., 1974, Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter, in: “The Sea, Vol. 5, Marine Chemistry,” E.D. Goldberg, ed., John Wiley and Sons, New York.Google Scholar
  78. Morris, I., Smith, A.E., and Glover, H.E., 1981, Products of photosynthesis in phytoplankton off the Orinoco River and in the Caribbean Sea, Limnol. Oceanogr., 26: 1034.CrossRefGoogle Scholar
  79. Norkrans, B., 1980, Surface microlayers in aquatic environments, Adv. Microbial Ecol., 4: 51.Google Scholar
  80. Paerl, H.W., 1975, Microbial attachment to particles in marine and freshwater ecosystems, Microb. Ecol., 2: 73.CrossRefGoogle Scholar
  81. Parker, R.R., and Tranter, D.J., 1981, Estimation of algal standing stock and growth parameters using in vivo fluorescence, Aust. J. Mar. Freshwater Res., 32:629.CrossRefGoogle Scholar
  82. Platt, T., and Denman, K., 1980, Patchiness in phytoplankton distribution, in: “The Physiological Ecology of Phytoplankton,” I Morris, ed., Blackwell Scientific Publications, Oxford.Google Scholar
  83. Poindexter, J.S., 1981, Oligotrophy. Fast and famine existence, Adv. Microbial Ecol., 5: 63.Google Scholar
  84. Pomeroy, L.R., 1974, The ocean’s food web, a changing paradigm, BioScience, 24: 499.CrossRefGoogle Scholar
  85. Pomeroy, L.R. and Johannes, R.E., 1966, Total plankton respiration, Deep Sea Res., 13: 971.Google Scholar
  86. Pomeroy, L.R. and Johannes, R.E., 1968, Occurance and respiration of ultraplankton in the upper 500 meters of the ocean, Deep Sea Res., 15: 381.Google Scholar
  87. Raymont, J.E.G., and Adams, M.N.E., 1958, Studies on the mass ulture of Phaeodactylum, Limnol. Oceanogr., 3: 119.CrossRefGoogle Scholar
  88. Redfield, A.C., Smith H.P., and Ketchum, B., 1937, The cycle of organic phosphorus in the Gulf of Maine, Biol. Bull., 73: 421.CrossRefGoogle Scholar
  89. Rifkin, R.B., and Swift, E., 1982, Phosphate uptake by the oceanic dinoflagellate Pyrocystis noctiluca, J. Phycol., 18: 113.CrossRefGoogle Scholar
  90. Riley, G.A., 1963, Organic aggregates in seawater and the dynamics of their formation and utilization, Limnol. Oceanogr. 8: 372.CrossRefGoogle Scholar
  91. Riley, G.A., 1970, Particulate organic matter in sea water, Adv. mar. Biol., 8: 1.CrossRefGoogle Scholar
  92. Rutter, P.R., 1980, The physical chemistry of the adhesion of bacteria and other cells, in: “Cell Adhesion and Motility,” A.S.G. Curtis and J.D. Pitts, eds, Cambridge University Press, London.Google Scholar
  93. Seki, H., 1972, The role of microorganisms in the marine food chain with reference to organic aggregate, Mem. 1st. Ital. Idrobiol. Suppl., 29: 245.Google Scholar
  94. Shanks, A.L., and Trent, J.D., 1979, Marine snow: Microscale nutrient patchiness, Limnol. Oceanogr., 24:850CrossRefGoogle Scholar
  95. Sharp, J.H., Perry, M.J., Renger, E.H., and Eppley, R.W., 1980, Phytoplankton rate processes in the oligotrophic waters of the central North Pacific Ocean, J. Plankton Res., 2: 335.CrossRefGoogle Scholar
  96. Sheldon, R.W., Prakash, A., and Sutcliffe, W.H. Jr., 1972, The size distribution of particles in the ocean, Limnol. Oceanogr., 17: 327.CrossRefGoogle Scholar
  97. Sherr, B.F., Sherr, E.B., and Berman, T., 1982, Decomposition of organic detritus: A selective role for microflagellate protozoa, Limnol. Oceanogr., 27: 765.CrossRefGoogle Scholar
  98. Sieburth, J. McN., 1979, “Sea Microbes,” Oxford University Press, New York.Google Scholar
  99. Sieburth, J.McN. Smetacek, V., and Lenz, J., 1978, Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions, Limnol. Oceanogr., 23: 1256.CrossRefGoogle Scholar
  100. Silver, M.W., and Alldredge, A.L., 1981, Bathypelagic marine snow: deep-sea algal and detrital community, J. Mar. Res., 39: 501.Google Scholar
  101. Silver, M.W., Shanks, A.L., and Trent, J.D., 1978, Marine snow: Microplankton habitat and source of small-scale patchiness in pelagic populations, Science, 201: 371.CrossRefGoogle Scholar
  102. Sorokin, Y.I., 1981, Microheterotrophic organisms in marine ecosystems, in: “Analysis of Marine Ecosystems,” A.R. Longhurst, ed., Academic Press, London.Google Scholar
  103. Spicer, C.C., 1955, The theory of bacterial constant growth apparatus, Biometrics, 11: 225.CrossRefGoogle Scholar
  104. Sutcliffe, W.H., Baylor, E.R., and Menzel, D.W., 1963, Sea surface chemistry and Langmuir circulation, Deep Sea Res., 10: 233.Google Scholar
  105. Swift, E., Stuart, M., and Meunier, V., 1976, The in situ growth rates of some deep-living oceanic dinoflagellates: Pyrocystis fusiformis and Pyrocystis noctiluca, Limnol. Oceanogr., 21: 418.CrossRefGoogle Scholar
  106. Throndsen, J., 1979, The significance of ultraplankton in marine primary production, Acta Bot. Fennica, 110: 53.Google Scholar
  107. Topiwala, H.H., and Hamer, G., 1971, Effect of wall growth in steady-state continuous cultures, Biotechnol. Bioeng., 13: 919.CrossRefGoogle Scholar
  108. Trent, J.D., Shanks, A.L. and Silver, M.W., 1978, In situ and laboratory measurements on macroscopic aggregates in Monterey Bay, California, Limnol. Oceanogr., 23: 626.CrossRefGoogle Scholar
  109. Turpin, D.H., Parslow, J.S., and Harrison, P.J., 1981, On limiting nutrient patchiness and phytoplankton growth: A conceptual approach, J. Plankton Res., 3: 421.CrossRefGoogle Scholar
  110. van den Ende, P., 1973, Predator-prey interactions in continuous culture, Science, 181: 562.CrossRefGoogle Scholar
  111. Wangersky, P.J., 1977, The role of particulate matter in the productivity of surface waters, Helgolander wiss. Meeresunters, 30: 546.CrossRefGoogle Scholar
  112. Wangersky, P.J., 1978, The distribution of particulate organic matter in the oceans: ecological implications, Int. Revue ges. Hydrobiol., 63: 567.CrossRefGoogle Scholar
  113. Waterbury, J.B., Watson, S.W., Guillard, R.R.L., and Brand, L.E., 1979, Widespread occurance of a unicellular, marine, planktonic, cyanobacterium, Nature, 277: 293.CrossRefGoogle Scholar
  114. Wheeler, P.A., Glibert, P.G., and McCarthy, J.J., 1982, Ammonium uptake and incorporation by Chespeake Bay phytoplankton: Short-term uptake kinetics, Limnol. Oceanogr., 27: 1113.Google Scholar
  115. Wiebe, W.J., and Pomeroy, L.R., 1972, Microorganisms and their association with aggregates and detritus in the sea: a microscopic study, Mem. Ist. Ital. Idrobiol. Suppl., 29: 325.Google Scholar
  116. Williams, P.J., LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch., Sondeh., 5:1.Google Scholar
  117. Williams, P.J. LeB. and Muir, L.R., 1981, Diffusion as a constraint on the biological importance of microzones in the sea, in: “Ecohydrodynamics”, J.C.J. Nihoul, ed. Elsevier Scientific Publishing Co., Amsterdam.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joel C. Goldman
    • 1
  1. 1.Woods Hole Oceanographic InstitutionUSA

Personalised recommendations