The Role of Free Bacteria and Bactivory

  • J. S. Gray
  • J. G. Field
  • F. Azam
  • T. Fenchel
  • L.-A. Meyer-Reil
  • F. Thingstad
Part of the NATO Conference Series book series (NATOCS, volume 13)


It is now recognized that bacteria and microheterotrophs play an important part in marine ecosystems (see Hobbie et al., 1972; Sieburth et al., 1977; Sieburth, 1979, 1983; Sorokin, 1979, 1981). This chapter is concerned with bacteria that live freely in the water column or on sand grains, as opposed to those on detritus particles, because detritus and detritivory are covered in another chapter of this volume. For the purposes of this chapter, bactivory is simply defined as feeding on such free bacteria.


Water Column Bacterial Production Acridine Orange Microbial Loop Heterotrophic Flagellate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam, F., 1983, Measurement of growth of bacteria in the sea and the regulation of growth by environmental conditions, In: “Heterotrophy in the Sea,” J. Hobbie and P.J. Le B Williams, eds., Plenum Press, New York.Google Scholar
  2. Azam, F., and Ammerman, J.W., Cycling of organic matter by bacterio- plankton in pelagic marine ecosystem: microenvironmental considerations, This volume,Google Scholar
  3. Azam, F., and Hodson, R.E., 1977, Size distribution and activity of marine microheterotrophs, Limnol. Oceanogr., 22: 492.CrossRefGoogle Scholar
  4. Barlow, R.G., 1982, Phytoplankton ecology in the southern Benguela Current: 2. Carbon assimilation patterns, J. exp. mar. Biol. Ecol., 63: 229.CrossRefGoogle Scholar
  5. Calow, P., 1977, Conversion efficiencies in heterotrophic organisms, Biol. Rev. 52: 385.CrossRefGoogle Scholar
  6. Fazio, S.D., Mayberry, W.R. and White, D.C., 1978, Muramic acid assay in sediments, Mar. Biol., 48: 185.CrossRefGoogle Scholar
  7. Fenchel, T., 1980, Suspension feeding in ciliated protozoa: feeding rates and their ecological significance, Microb. Ecol., 6: 13.CrossRefGoogle Scholar
  8. Fenchel, T., 1982a, Ecology of heterotrophic microflagellates. 1. Some important forms and their functional morphology, Mar. Ecol. Prog. Ser., 8: 211.CrossRefGoogle Scholar
  9. Fenchel, T., 1982b, Ecology of heterotrophic microflagellates, II. Bio-energetics and growth, Mar. Ecol. Prog. Ser., 8: 225.CrossRefGoogle Scholar
  10. Fenchel, T., 1982c, Ecology of heterotrophic microflagellates, III. Adaptations to heterogeneous environments, Mar. Ecol, Prog. Ser., 9: 35.CrossRefGoogle Scholar
  11. Fenchel, T., 1982d, Ecology of heterotrophic microglagellates. IV. Quantitative occurrence and importance as consumers of bacteria, Mar. Ecol. Prog. Ser., 9:35.CrossRefGoogle Scholar
  12. Fenchel, T., Suspended marine bacteria as a food source, This volume.Google Scholar
  13. Fenchel, T. and Blackburn, T.H., 1979, “Bacteria and mineral cycling,” Academic Press, London.Google Scholar
  14. Flood, P.R., 1978, Filter characteristics of appendicularian food catching nets, Experimentia, 34: 173.CrossRefGoogle Scholar
  15. Francisco, D.E., Mah, R.A. and Rabin, A.C., 1973, Acridine orange epifluorescence technique for counting bacteria, Trans. Amer. Micros. Soc, 92: 416.CrossRefGoogle Scholar
  16. Fuhrman, J.A. 1981, Influence of, method on the apparent size distribution of bacterioplankton cells: epifluorescence microscopy compared to scanning electron microscopy, Mar. Ecol. Prog. Ser., 5: 103.CrossRefGoogle Scholar
  17. Fuhrman, J.A. and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antartica and California, Appl. environ. Microbiol., 39: 1085.Google Scholar
  18. Fuhrman, J.A. and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results, Mar. Biol. 66: 109.CrossRefGoogle Scholar
  19. Gray, J.S., 1966, Factors controlling the localizations of populations in Protodrilus symbioticus Giard, J. anim. Ecol., 35: 435.CrossRefGoogle Scholar
  20. Hagström, A., Larsson, U., Hörstedt, P. and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. environ. Microbiol., 37: 805.Google Scholar
  21. Hargrave, B.T. and Phillips, G.A., 1981, Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment, Estuar. Coastl Shelf Sci., 12 725.CrossRefGoogle Scholar
  22. Hobbie, J.E., Daley, R.J. and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. environ. Microbiol., 33: 1225.Google Scholar
  23. Hobbie, J.E., Holm-Hansen, O., Packard, T.T., Pomeroy, L.R., Sheldon, R.W., Thomas, J.P. and Wiebe, W.J., 1972, A Study of the distribution and activity of microorganisms in ocean water, Linmnol. Oceanoqr., 17: 544.CrossRefGoogle Scholar
  24. Itturiaga, R. and Zsolnay, 1981, Transformation of some dissolved organic components by a natural heterotrophic population, Mar. Biol., 62: 125.CrossRefGoogle Scholar
  25. Joiris, C., Billen, G., Lancelot, C., Daro, M.H., Momaerts, J.P., Berteis, A., Bossicarta, M., Nijs, J., and Hecq, J.H., 1982, A budget of carbon cycling in the Belgian coastal zone. Relative roles of zooplankton, bacterioplankton and benthos in the utilization of primary production, Neth. J. Sea, Res., 16: 260.CrossRefGoogle Scholar
  26. Jørgensen, C.B., 1976, “Biology of suspension feeding,” Pergamon, Oxford, U.K.Google Scholar
  27. Karl, D.M., 1980, Cellular nucleotide measurements and applications in microbial ecology, Microb. Rev., 44: 739.Google Scholar
  28. King, G.M., and Klug, M.J., 1982, Glucose metabolism in sediments of a eutrophic lake: tracer analysis of uptake and product formation, Appl. Environ. Microbiol., 44: 1308.Google Scholar
  29. King, K.R., Hollibaugh, J.T. and Azam, F., 1980, Predator-prey interactions between the larvacean Oilopleura dioica and bacterioplankton in enclosed water columns, Mar. Biol., 56: 49.CrossRefGoogle Scholar
  30. Kirchman, D., and Mitchell, R., 1982, Contribution of particulatebound bacteria to total microheterotrophic activity in five ponds and two marshes, Appl. environ. Microbiol 1/2. 43: 200.Google Scholar
  31. Koch, A.L., 1971, The adaptive responses of Escherichia coli to a feast and famine existence, Adv. Microbial Physiol., 6: 147.CrossRefGoogle Scholar
  32. Koop, K., 1982, Fluxes of material associated with the decomposition kelp on exposed sandy beaches and adjacent habitats, Ph. D. thesis, Univ. Cape Town.Google Scholar
  33. Koop, K., Newell, R.C., and Lucas, M.I., 1982, Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore, Mar. Ecol. Prog, Ser., 9: 91.CrossRefGoogle Scholar
  34. Krambeck, C., Krambeck, H.-J. and Overbeck, J., 1981, Microcomputer-assisted biomass determination of plankton bacteria on scanning electron micrographs, Appl. environ. Microbiol., 42: 142.Google Scholar
  35. Larsson, U. and Hagström, A., 1979, Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar. Biol., 52: 199.CrossRefGoogle Scholar
  36. Larsson, U. and Hagström, A., 1982, Fractionated phytoplankton primary production, exudate release, and bacterial production in a Baltic eutrophication gradient, Mar. Biol. 67: 57.CrossRefGoogle Scholar
  37. Linley, E.A.S. and Newell, R.C., 1981, Microheterotrophic communities associated with the degradation of kelp debris, Kieler Meeresforsch., 5: 345.Google Scholar
  38. Linley, E.A.S. and Field, J.G., 1981, The nature and ecological significance of bacterial aggregation in a nearshore upwelling ecosystem, Estuar. Cstl Shelf Sci., 14: 1.CrossRefGoogle Scholar
  39. Linley, E.A.S., Newell, R.C. and Lucas, M.I., 1983, Quantitative relationships between phytoplankton, bacteria and heterotrophic microflagellates in shelf waters, Mar. Ecol. Prog. Ser., In press.Google Scholar
  40. Mann, K.H., 1982, “The Ecology of coastal waters: A systems approach,” Blackwell, Oxford.Google Scholar
  41. Meyer-Reil, L.-A., 1979, Bacterial growth rates and biomass production, In: “Microbial ecology of a brackish water environment,” G. Rheinheimer, ed., Springer-Verlag, Berlin.Google Scholar
  42. Meyer-Reil, L.-A., 1983, Bacterial biomass and heterotrophic activity in sediments and overlying waters, In: “Heterotrophy in the sea,” J.E. Hobbie, and P.J. Williams, eds., Plenun Press, New York.Google Scholar
  43. Meyer-Reil, L.-A., Dawson, R., Liebezeit, G. and Tiedge, H., 1978, Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying waters, Mar. Biol., 48: 161.CrossRefGoogle Scholar
  44. Meyer-Reil, L.-A., Bölter, M., Liebezeit, G., Schramm, W., 1979, Short-term variations in microbiological and chemical parameters, Mar. Ecol. Prog. Ser., 1: 1.CrossRefGoogle Scholar
  45. Moriarty, D.J.W., 1977, Improved method using muramic acid to estimate biomass of bacteria in sediments, Oecologia, 26: 317.CrossRefGoogle Scholar
  46. Newell, R.C., Lucas, M.I., and Linley, E.A.S., 1981, Rate of degradation and efficiency of conversion of phytoplankton debris by marine micro-organisms, Mar. Ecol. Prog. Ser., 6: 123.CrossRefGoogle Scholar
  47. Newell, R.C., The biological role of detritus in the marine environment, This volume.Google Scholar
  48. Novitsky, J.A. and Kepkay, P.E., 1981, Patterns of microbial heterotrophy through changing environments in a marine sediment, Mar. Ecol. Prog.Ser., 4: 1.CrossRefGoogle Scholar
  49. Pamatmat, M.M., Graf, G., Bengtsson, W. and Novak, C.S., 1981, Heat production, ATP concentration and electron transport activity of marine sediments, Mar. Ecol. Prog. Ser., 4: 135.CrossRefGoogle Scholar
  50. Parsons, T.R., Albright, L.J., Whitney, F., Wong, C.S. and Williams, P.J., 1981, The effect of glucose on the productivity of of seawater — an experimental approach using controlled aquatic ecosystems, Mar. Envir. Res., 4: 229.CrossRefGoogle Scholar
  51. Payne, W.T., and Wiebe, W.J., 1978, Growth yield and efficiency in chemosynthetic microorganisms, Ann. Rev. Microbiol., 32: 115.CrossRefGoogle Scholar
  52. Paul, J.H., 1982, Use of Hoechst Dyes 33258 and 33342 for enumeration of attached and planktonic bacteria, Appl. env. Microbiol., 43: 939.Google Scholar
  53. Porter, K.G. and Feig, Y.S., 1981, The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 25: 943.CrossRefGoogle Scholar
  54. Riemann, F. and Schrage, M., 1978, The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture, Oecologia (Berl.), 34: 75.CrossRefGoogle Scholar
  55. Reiswig, H.M., 1974, Water transport, respiration and energetics of three tropical marine sponges, J. exp. mar. Biol. Ecol., 14: 231.CrossRefGoogle Scholar
  56. Reiswig, H.M., 1975, The aquiferous systems of three marine demospongiae, J. Morphol., 145: 493.CrossRefGoogle Scholar
  57. Sheldon, R.W., Prakash, A. and Sutcliffe, W.H., 1972, The size distribution of particles in the ocean, Limnol. Oceanogr., 17: 327.CrossRefGoogle Scholar
  58. Sieburth, J.McN., 1979, “Sea microbes”, Oxford Univ. Press, N.Y.Google Scholar
  59. Sieburth, J.McN., 1983, Grazing of bacteria by protozooplankton in pelagic marine waters, In: “Heterotrophy in the sea,” J.E. Hobbie and P.J. le B. Williams, eds., Plenum Press, New York.Google Scholar
  60. Sieburth, J.McN., Johnson, K.M., Burney, C.H. and Lavoie, D.M., 1977, Estimation of in situ rates of heterotrophy using changes in dissolved organic matter and growth rates of picoplankton in diffusion culture, Helgoländer wiss. Meeresunters., 30: 565.CrossRefGoogle Scholar
  61. Smetacek, V., The supply of food to the benthos, This volume.Google Scholar
  62. Sorokin, Y.I., 1979, Zooflagellates as a component of eutrophic and oligotrotrophic communities of the Pacific Ocean, Okeanologiya, 3: 476.Google Scholar
  63. Sorokin, Y.I., 1981, Microheterotrophic organisms in marine ecosystems, In: “Analysis of marine ecosystems,” A.R. Longhurst, ed., Academic Press, London.Google Scholar
  64. Sorokin, Y.I. and Lyursarev, S.V., 1978, A comparative evaluation of two methods of determining the biomass of planktonic microflagellates, Oceanol. Acad. Sci. U.S.S.R., 18: 232.Google Scholar
  65. Stuart, V., Field, J.G. and Newell, R.C., 1982, Evidence for absorption of kelp detritus by the ribbed mussel Aulacomya ater using a new 14Cr-labelled microsphere technique, Mar. Ecol. Prog. Ser., 9: 263.CrossRefGoogle Scholar
  66. Vaccaro, R.F., Azam, F. and Hodson, R.E., 1977, Response of natural marine bacterial populations to copper: controlled ecosystems pollution experiment. Bull. Mar. Sci., 27: 17.Google Scholar
  67. Van Es, F.B., and Meyer-Reil, L.A., 1982, Biomass and metabolic, activity of heterotrophic bacteria, Adv. Microbial Ecol., 6: 111.CrossRefGoogle Scholar
  68. Wangersky, P.J., 1977, The role of particulate matter in the productivity of surface waters, Helgol. wiss. Meeresunters., 30: 546.CrossRefGoogle Scholar
  69. Watson, S.W., Novitsky, J.J., Quinby, H.L. and Valois, F.W., 1977, Determination of bacterial number and biomass in the marine environment. Appl. environ. Microbiol., 33: 940.Google Scholar
  70. Weise, W. and Rheinheimer, G., 1978, Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments, Microb. Ecol., 4: 175.CrossRefGoogle Scholar
  71. Wiebe, W.J. and Pomeroy, L.R., 1972, Microorganisms and their association with aggregates and detritus in the sea: a microscopic study, In: “Detritus and its role in aquatic ecosystems”, U. Melchiom-Santolini and J.W. Hopton, eds., Mem. Ist. Ital. Idrobiol., 24: 325.Google Scholar
  72. Williams, P.J. Le B., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch, 5: 1.Google Scholar
  73. Williams, P.J. le B., Bacterial production in the marine food chain: the emperor’s new suit of clothes, This volume.Google Scholar
  74. Wright, R.T., Coffin, R.B., Ersing, C.P. and Pearson, D., 1982, Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton, Limnol. Oceanogr. 27: 91.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. S. Gray
    • 1
  • J. G. Field
    • 2
  • F. Azam
    • 3
  • T. Fenchel
    • 4
  • L.-A. Meyer-Reil
    • 5
  • F. Thingstad
    • 6
  1. 1.Institutt for Marinbiologi og LimnologiUniversitetet i OsloOslo 3Norway
  2. 2.Zoology DepartmentUniversity of Cape TownRondeboschSouth Africa
  3. 3.Scripps Institution of OceanographyInstitute of Marine ResourcesLa JollaUSA
  4. 4.Institute of Ecology and GeneticsUniversity of AarhusAarhus-CDenmark
  5. 5.Institut für MeereskundeUniversität KielKiel 1F. D. R.
  6. 6.Institute for MicrobiologyUniversity of BergenBergenNorway

Personalised recommendations