Advertisement

Thermodynamics of the Pelagic Ecosystem: Elementary Closure Conditions for Biological Production in the Open Ocean

  • Trevor Platt
  • Marlon Lewis
  • Richard Geider
Part of the NATO Conference Series book series (NATOCS, volume 13)

Abstract

In the pelagic zone of the ocean, the primordial ecological event is the conversion by phytoplankton of radiant energy from the sun into biochemical energy. The rate at which this process proceeds is called the primary production of the ocean. In spite of its fundamental importance and its profound significance for the tropho-dynamics of the marine ecosystem, the absolute magnitude of primary production in the ocean is still uncertain to within a factor of ten (Eppley, 1980). More than 50 years of research effort have gone into its measurement, including 30 years with a high precision isotopic tracer technique: but instead of converging on some generally accepted figures, the estimates continue to diverge (Steemann Nielsen, 1954; Platt and Subba Rao, 1975; Eppley and Peterson, 1979; Peterson, 1980). It has become conventional, if not ritualistic, for any inconsistencies in independent estimates to be laid at the door of the 14C method (Williams, 1981). The technique with the highest potential precision is therefore in danger of losing (has lost?) credibility on the grounds of accuracy. If primary production estimates up to two orders of magnitude higher than the 14C figures can be given serious consideration in the literature (Sheldon and Sutcliffe, 1978; Gieskes et al., 1979; Johnson et al., 1981; Shulenberger and Reid, 1981) why not three orders or four orders higher?

Keywords

Photosynthetically Active Radiation Particulate Organic Carbon Euphotic Zone Community Respiration Nitrogen Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas, D., and Bannister, T. T., 1981, Dependence of mean spectral extinction coefficient of phytoplankton on depth, water color, and species, Limnol.Oceanogr., 25:157.CrossRefGoogle Scholar
  2. Bannister, T. T., 1974, Production equations in terms of chlorophyll concentration, quantum yield and upper limit to production, Limnol.Oceanogr., 19:1.CrossRefGoogle Scholar
  3. Beers, J. R., Reid, F. M. H., and Stewart, G. L., 1975, Microplankton of the North Pacific central gyre. Population structure and abundance, June 1973, Int.Revue Ges.Hydrobiol, 60:607.Google Scholar
  4. Beers, J. R., Reid, F. M. H., and Stewart, G. L., 1982, Seasonal abundance of the microplankton population in the North Pacific central gyre, Deep-Sea Res., 29:227.CrossRefGoogle Scholar
  5. Blasco, D., Packard, T. T., and Garfield, P. C., 1982, Size dependence of growth rate, respiratory electron transport system activity, and chemical composition in marine diatoms in the laboratory, J.Phycol., 18:58.CrossRefGoogle Scholar
  6. Carpenter, E. J., and McCarthy, J. J., 1975, Nitrogen fixation and uptake of combined nitrogenous nutrients by Oscillatoria (Trichodesmium) thieboutii in the western Sargasso Sea, Limnol.Oceanogr., 20:389.CrossRefGoogle Scholar
  7. Carpenter, E. J., and Price, IV C. C., 1977, Nitrogen fixation, distribution, and production of Oscillatoria (Trichodesmium) spp. in the western Sargasso Sea and Caribbean Sea, Limnol. Oceanogr., 22:60.Google Scholar
  8. Conover, R. J., 1978, Transformation of organic matter, in: “Marine Ecology,” O. Kinne, ed., John Wiley and Sons, London.Google Scholar
  9. Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12:196.Google Scholar
  10. Eppley, R. W., 1980, Estimating phytoplankton growth rates in the central oligotrophic oceans, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Plenum Press, New York.Google Scholar
  11. Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.CrossRefGoogle Scholar
  12. Eppley, R. W., Renger, E. H., Venrick, E. L., and Mullin, M. M., 1973, A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean, Limnol.Oceanogr., 18:534.CrossRefGoogle Scholar
  13. Eppley, R. W., and Sharp, J. H., 1975, Photosynthetic measurements in the central North Pacific: The dark loss of carbon in 24 hour incubations, Limnol.Oceanogr., 20:981.CrossRefGoogle Scholar
  14. Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J., and Harrison, W. G., 1977, Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific Ocean, Mar.Biol., 39:111.CrossRefGoogle Scholar
  15. Falkowski, P. G., 1980, Light-shade adaptation in marine phytoplankton, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Plenum Press, New York.Google Scholar
  16. Fenchel, T., 1974, Intrinsic rate of natural increase: The relationship with body size, Oecologia, 14:317.CrossRefGoogle Scholar
  17. Fogg, G. E., 1982, Nitrogen cycling in sea waters, Phil.Trans.R.Soc. Lond., B296:511.Google Scholar
  18. Gallegos, C. L., and Platt, T., 1981, Photosynthesis measurements on natural populations of phytoplankton: numerical analysis, in: “Physiological Bases of Phytoplankton Ecology,” T. Platt, ed., Can.Bull.Fish.Aquat.Sci. 210, Ottawa.Google Scholar
  19. Gargett, A. E., 1976, An investigation of the occurrence of oceanic turbulence with respect to fine structure, J.Phys.Oceanogr., 6:139.CrossRefGoogle Scholar
  20. Garrett, C., 1979, Mixing in the ocean interior, Dynamics of Atmospheres and Oceans, 3:239.CrossRefGoogle Scholar
  21. Gieskes, W. W. C., Kraay, G. W., and Baars, M. A., 1979, Current 14C methods for measuring primary production: gross underestimates in oceanic waters, Neth.J.Sea Res., 13:58.CrossRefGoogle Scholar
  22. Gundersen, K. R., Corbin, J. S., Hanson, C. L., Hanson, M. L., Hanson, R. B., Russel, D. J., Stollar, A., and Yamada, O., 1976, Structure and biological dynamics of the oligotrophic ocean photic zone off the Hawaiian Islands, Pacif.Sci., 30:45.Google Scholar
  23. Hall, D. O., and Rao, K. K., 1972, “Photosynthesis,” Edward Arnold, London.Google Scholar
  24. Hemmingsen, A. M., 1960, Energy metabolism as related to body size and respiratory surfaces, and its evolution, Reports of the Steno Memorial Hospital, Copenhagen. 9(Part 2): 110p.Google Scholar
  25. Herbland, A., 1978, The soluble fluorescence in the open sea: distribution and ecological significance in the equatorial Atlantic Ocean, J.Exp.Mar.Biol.Ecol., 32:275.CrossRefGoogle Scholar
  26. Herbland, A., and LeBouteiller, A., 1981, The size distribution of phytoplankton and particulate matter in the Equatorial Atlantic Ocean: Importance of ultraseston and consequences, J.Plankt.Res., 3:659.CrossRefGoogle Scholar
  27. Ivanenkov, V. N., Sapozhnikov, V. V., Chernyakova, A. M., and Gusarova, A. N., 1972, Rate of chemical processes in the photosynthetic layer of the tropical Atlantic, Oceanology, 12:207.Google Scholar
  28. Jackson, G. A., 1980, Phytoplankton growth and Zooplankton grazing in oligotrophic oceans, Nature, 284:439.CrossRefGoogle Scholar
  29. Jassby, A. D., and Platt, T., 1976, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol.Oceanogr., 21, 540.CrossRefGoogle Scholar
  30. Jenkins, W. T., 1980, Tritium and 3He in the Sargasso Sea, J.Mar. Res., 38:533.Google Scholar
  31. Johnson, K. M., Burney, C. M., and Sieburth, McN. J., 1981, Enigmatic marine ecosystem metabolism measured by direct diel ΣCO2, and O2 flux in conjunction with DOC release and uptake, Mar.Biol., 65:49.CrossRefGoogle Scholar
  32. Johnson, P. W., and Sieburth, McN. J., 1979, Chroococcoid cyano-bacteria at sea: A ubiquitous and diverse phototrophic bio-mass, Limnol.Oceanogr., 24:928.CrossRefGoogle Scholar
  33. Kiefer, D. A., 1973, Fluorescence properties of natural phytoplankton populations, Mar.Biol., 22:263.CrossRefGoogle Scholar
  34. Knauer, G. A., Martin, J. H., and Bruland, K. W., 1979, Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the northeast Pacific, Deep-Sea Res., 26A: 97.CrossRefGoogle Scholar
  35. Mague, T. H., Mague, F. C., and Holm-Hansen, O., 1977, Physiology and chemical composition of nitrogen-fixing phytoplankton in the central North Pacific Ocean, Mar.Biol., 41:213.CrossRefGoogle Scholar
  36. Malone, T. C., 1980, Size-fractioned primary productivity of marine phytoplankton, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Plenum Press, New York.Google Scholar
  37. Martinez, L. A., King, J. M., Silver, M. W., and Alldredge, A. L., 1982, A new system of nitrogen fixation in oligotrophic oceanic waters, (Abstract), EOS., 63:101.Google Scholar
  38. McCarthy, J. J., and Carpenter, E. J., 1979, Oscillatoria (Tricho-desmium) thieboutii (Cyanophyta) in the central North Atlantic Ocean, J.Phyco1., 15:75.CrossRefGoogle Scholar
  39. McGowan, J. A., and Hayward, T. L., 1978, Mixing and oceanic productivity, Deep-Sea Res., 25:771.CrossRefGoogle Scholar
  40. McLellan, H. J., 1965, “Elements of Physical Oceanography,” Pergamon Press, Oxford.Google Scholar
  41. Morel, A., and Bricaud, A., 1981, Theoretical results concerning light absorption in a discrete medium and applications to specific absorption of phytoplankton, Deep-Sea Res., 28:1375.CrossRefGoogle Scholar
  42. Mullin, M. M., Perry, M. J., Renger, E. H., and Evans, P. M., 1975, Nutrient regeneration by oceanic Zooplankton: a comparison of methods, Mar.Sci.Comm., 1:1.Google Scholar
  43. Munk, W. H., 1966, Abyssal recipes, Deep-Sea Res., 13:707.Google Scholar
  44. Parker, R. R., 1981, A note on the so-called “soluble fluorescence” of chlorophyll a in natural waters, Deep-Sea Res., 28A:1231.CrossRefGoogle Scholar
  45. Peterson, B. J., 1980, Aquatic productivity and the 14C-CO2 method: A history of the productivity problem, Ann.Rev.Ecol.Syst., 11:359.CrossRefGoogle Scholar
  46. Platt, T., 1969, The concept of energy efficiency in primary production, Limnol.Oceanogr., 14:653.CrossRefGoogle Scholar
  47. Platt, T., and Denman, K. L., 1977, Organisation in the pelagic ecosystem, Helgolander wiss.Meeresunters, 30:575.CrossRefGoogle Scholar
  48. Platt, T., and Denman, K. L., 1978, The structure of pelagic marine ecosystems, Rapp.Proc.-verb.Reun.Cons.perm.int.Explor.Mer, 173:60.Google Scholar
  49. Platt, T., Denman, K. L., and Jassby, A. D., 1977, Modelling the productivity of phytoplankton, in: “The Sea: Ideas and Observations on Progress in the Study of the Seas,” E. D. Goldberg, ed., John Wiley, New York.Google Scholar
  50. Platt, T., and Gallegos, C. L., 1980, Modelling primary production, in: “Primary Productivity in the Sea, P. G. Falkowski, ed., Plenum Press, New York.Google Scholar
  51. Platt, T., Gallegos, C. L., and Harrison, W. G., 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J.Mar.Res., 38:687.Google Scholar
  52. Platt, T., and Jassby, A. D., 1976, The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton, J.Phycol., 12:421.Google Scholar
  53. Platt, T., and Silvert, W., 1981, Ecology, physiology, allometry and dimensionality, J.Theor.Biol., 93:855.CrossRefGoogle Scholar
  54. Platt, T., and Subba Rao, D. V., 1975, Primary production of marine microphytes, in: “Photosynthesis and Productivity in Different Environments,” J. P. Cooper, ed., Cambridge University Press, Cambridge.Google Scholar
  55. Pomeroy, L., 1974, The ocean’s food web, a changing paradigm, Bioscience, 24:499.CrossRefGoogle Scholar
  56. Postma, H., and Rommets, J. W., 1979, Dissolved and particulate organic carbon in the North Equatorial Current of the Atlantic Ocean, Neth.J.Sea.Res., 13:85.CrossRefGoogle Scholar
  57. Raven, J. A., and Beardall, J., 1981, Respiration and photorespir ation, in: “Physiological Bases of Phytoplankton Ecology,” T. Platt, ed., Can.Bull.Fish.Aquat.Sci. 210, Ottawa.Google Scholar
  58. Riley, G. A., 1939, Plankton studies. II. The western north Atlantic, May-June, 1939, J.Mar.Res., 2:145.Google Scholar
  59. Riley, G. A., 1951, Oxygen, phosphate and nitrate in the Atlantic Ocean, Bull.Bingham.Oceanogr.Coll., 13:1.Google Scholar
  60. Riley, G. A., 1970, Particulate organic matter in seawater, Adv.Mar. Biol., 8:1.CrossRefGoogle Scholar
  61. Riley, G. A., Stommel, H., and Bumpus, D. F., 1949, Quantitative ecology of the plankton of the Western North Atlantic, Bull. Bingham.Oceanogr.Coll. 12:1.Google Scholar
  62. Ryther, J. H., 1954, The ratio of photosynthesis to respiration in marine plankton algae and its effect upon the measurement of productivity, Deep-Sea Res., 2:134.Google Scholar
  63. Schmitt, R. W., and Evans, D. L., 1978, An estimate of the vertical mixing due to salt fingers based on observations in the North Atlantic Central Water, J.Geophys.Res., 83:1913.CrossRefGoogle Scholar
  64. Sheldon, R. W., Prakash, A., and Sutcliffe, W. H., 1972, The size distribution of particles in the ocean, Limnol.Oceanogr., 17:327.CrossRefGoogle Scholar
  65. Sheldon, R. W., Sutcliffe, W. H., 1978, Generation times of 3h for Sargasso Sea microplankton determined by ATP analysis, Limnol. Oceanogr., 23:1051.Google Scholar
  66. Shulenberger, E., and Reid, J. L., 1981, The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered, Deep-Sea Res., 28A:901.CrossRefGoogle Scholar
  67. S.I.O., 1975, Data Report, Climax II Expedition SIO Reference 75–6.Google Scholar
  68. Smith, W. O., 1977, The respiration of photosynthetic carbon in euphotic areas of the ocean, J.Mar.Res., 35:557.Google Scholar
  69. Steemann-Nielsen, E., 1954, On organic production in the oceans, J.Cons.Explor.Mer., 19:309.Google Scholar
  70. Suess, E., 1980, Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization, Nature, 288:260.CrossRefGoogle Scholar
  71. Tailing, J. F., 1957, The phytoplankton population as a compound photosynthetic system, New Phytol., 56:133.CrossRefGoogle Scholar
  72. Tijssen, S. B., 1979, Diurnal oxygen rhythm and primary production in the mixed layer of the Atlantic Ocean at 20°N, Neth.J.Sea Res., 13:79.CrossRefGoogle Scholar
  73. Venrick, E. L., 1974, The distribution and significance of Richelia intracellulosis Schmidt in the North Pacific central gyre, Limnol.Oceanogr., 19:437.CrossRefGoogle Scholar
  74. Waterbury, J. B., Watson, S. W., Guillard, R. R., and Brand, L. E., 1979, Widespread occurrence of a unicellular marine plankton cyanobacterium, Nature, 277:293.CrossRefGoogle Scholar
  75. Williams, P. J. LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch, 5:1.Google Scholar
  76. Worthington, L. V., 1976, “On the North Atlantic Circulation,” Johns Hopkins University Press, Baltimore.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Trevor Platt
    • 1
  • Marlon Lewis
    • 1
    • 2
  • Richard Geider
    • 1
    • 3
  1. 1.Marine Ecology LaboratoryBedford Institute of OceanographyDartmouthCanada
  2. 2.Dept. of BiologyDalhousie UniversityHalifaxCanada
  3. 3.Dept. of OceanographyDalhousie UniversityHalifaxCanada

Personalised recommendations