• J. B. L. Matthews
  • A. L. Alldredge
  • R. L. Haedrich
  • J. Paloheimo
  • L. Saldanha
  • G. D. Sharp
  • E. Ursin
Part of the NATO Conference Series book series (NATOCS, volume 13)


The group chose to define carnivory as:

“The acquisition of animal food resulting in the immediate death of the food organism”.


Size Spectrum Food Organism Pelagic Ecosystem Marine Food Chain Comptes Rendus Acad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge, A.L., The quantitative significance of gelatinous zooplankton as planktonic indicators, This volume.Google Scholar
  2. Alliot, E., Pastoureaud, A., and Trellu, J., 1980, Evolution des activités enzymatiques dans le tractus digestif au cours de la vie larvaire de la Sole. Variations des proteinogrammes et des zymogrammes, Biochem. Syst. Ecol., 8: 441.CrossRefGoogle Scholar
  3. Andersen, K.P., In press, An interpretation of the stomach contents of fish in relation to prey abundance, Dana, 2.Google Scholar
  4. Arashkevich, Ye. G., 1969, The food and feeding of copepods in the north-western Pacific, Oceanology, 9: 695.Google Scholar
  5. Banse, K., and Mosher, S., 1980, Adult body mass and annual production/biomass relationships of field populations, Ecol. Monogr., 50: 355.CrossRefGoogle Scholar
  6. Boon, J., 1978, “Molecular biogeochemistry of lipids in four natural environments,” Delft Univ. Press, Delft.Google Scholar
  7. Campbell, R.A., Haedrich, R.L., and Munroe, T.A., 1980, Parasitism and ecological relationships among deep-sea benthic fishes, Marine Biology, 57: 301.CrossRefGoogle Scholar
  8. Childress, J.J., Taylor, S.M., Cailliet, G.M. and Price, M.H., 1980, Patterns of growth, energy utilization, and reproduction in some meso- and bathypelagic fishes off southern California, Mar. Biol., 61: 27.CrossRefGoogle Scholar
  9. Dotson, R.C., 1978, Fat deposition and utilization in albacore, in: G.D. Sharp and A.E. Dizon, eds., “The Physiological Ecology of Tunas,” Academic Press, New York.Google Scholar
  10. Doyle, C.M., and Jamieson, J.D., 1978, Development of secretagogue response in rat pancreatic acinar cells, Developmental Biol., 65: 11.CrossRefGoogle Scholar
  11. Edmondson, W.T., and Winberg, G.G., 1971, A manual on methods for assessment of secondary productivity in fresh waters, IBP Handbook No. 17, Blackwell, Oxford.Google Scholar
  12. Fowler, S.W., 1982, Biological transfer and transport processes. in: G. Kullenberg, ed. “Pollutant Transfer and Transport in the Sea,” C.R.C. Press, Cleveland, U.S.A.Google Scholar
  13. Grassle, J.F., Sanders, H.L., Hessler, R.R., Rowe, G.T., and McLellan, T., 1975, Pattern and zonation: a study of the bathyal mega-fauna using the research submersible Alvin, Deep-Sea Res., 22: 457.Google Scholar
  14. Grice, G.D., and Reeve, M.R., eds., 1982, “Marine Mesocosms,” Springer-Verlag, New York.Google Scholar
  15. Haedrich, R.L., Rowe, G.T., and Polloni, P.T., 1980, The megabenthic fauna in the deep sea south of New England, Mar. Biol., 57: 165.CrossRefGoogle Scholar
  16. Hamner, W.M., Madin, L.P., Alldredge, A.L., Gilmer, R.W., and Hamner, P.P., 1975, Underwater observations of gelatinous zooplankton: sampling problems, feeding biology, and behaviour, Limnol. Oceanogr., 20: 907.CrossRefGoogle Scholar
  17. Holling, C.S., 1966a, The strategy of building models of complex ecological systems, in: K.E.F. Watt, ed. “Systems Analysis in Ecology,” Academic Press, New York.Google Scholar
  18. Holling, C.S., 1966b, The functional response of invertebrate predators to prey density, Mem. entomol. Soc. Canada, No. 48, 5.Google Scholar
  19. Holling, C.S., and Buckingham, S., 1976, A behavioural model of predator-prey functional responses, Behavioral Science, 21: 183.CrossRefGoogle Scholar
  20. Horridge, G.A., and Boulton, P.S., 1967, Prey detection by Chaetognatha via a vibrational sense, Proc. Roy. Soc. London. Ser. B, 168: 413.CrossRefGoogle Scholar
  21. Isaacs, J.D., 1973, Potential trophic biomasses and trace substance concentrations in unstructured marine food webs, Marine Biology, 22: 97.CrossRefGoogle Scholar
  22. Isaacs, J.D., 1977, The life of the open sea, Nature London, 267: 778.CrossRefGoogle Scholar
  23. Koehl, M.A.R., and Strickler, J.R., 1981, Copepod feeding currents: food capture at low Reynolds number, Limnol. Oceanogr. 26: 1062.CrossRefGoogle Scholar
  24. Lancroft, T.M., and Robison, B.N., 1980, Evidence of post-capture ingestion by midwater fishes in trawl nets, Fish. Bull. nat. mar. Fish. Serv., 77: 713.Google Scholar
  25. Mackas, D.L., and Boyd, C.M., 1979, Spectral analysis of zooplankton spatial heterogeneity, Science, 204: 62.CrossRefGoogle Scholar
  26. Mackas, D.L., Curran, T.A., and Sloan, D., 1981, An electronic zooplankton counting and sizing system, Oceans Magazine, 12: 783.Google Scholar
  27. May, R.M., 1973, “Stability and complexity in model ecosystems,” Princeton University Press, Princeton.Google Scholar
  28. Mearns, A.J., Young, D.R., Olson, R.J. and Schafer, H.A., 1981, Trophic structure and the cesium-potassium ratio in pelagic ecosystems, CalCOFI Rep., 22: 99.Google Scholar
  29. Mills, E.L., Pittman, K., and Tan, F.C., In press, Food-web structure on the Scotian shelf, Eastern Canada. A study using 13C as a food-chain tracer, Rapp. R.-v. Réun. Cons. int. Explor. Mer.Google Scholar
  30. Paloheimo, J.E., 1971, On the theory of search, Biometrika, 58: 62.CrossRefGoogle Scholar
  31. Paloheimo, J.E., 1979, Indices of food type preference by a predator, J. Fish. Res. Bd Can., 36: 470.CrossRefGoogle Scholar
  32. Pamatmat, M., Measuring the metabolism of the benthic ecosystem, This volume.Google Scholar
  33. Parslow, J., Sonntag, N.C., and Matthews, J.B.L., 1979, Technique of systems identification applied to estimating copepod population parameters, J. Plankton Res., 1: 137.CrossRefGoogle Scholar
  34. Parsons, T.R., and LeBrasseur, R.J., 1970, The availability of food to different trophic levels in the marine food chain, in: “Marine Food Chains,” J.H. Steele, ed., Oliver and Boyd, Edinburgh.Google Scholar
  35. Platt, T., and Denman, K., 1977, Organization in the pelagic ecosystem, Helgol. wiss. Meeresunters., 30: 575.CrossRefGoogle Scholar
  36. Polloni, P., Haedrich, R.L., Rowe, C.T., and Clifford, C.H., 1979, The size-depth relationship in deep ocean animals, Int. Revue ges. Hydrobiol., 64: 39.CrossRefGoogle Scholar
  37. Praët, M. van, and Geistdoerfer, P., 1980, Etudes des zymogrammes des tissus digestifs des poissons et invertébrés abyssaux, Comptes Rendus Acad. Sci., Paris, 290 (D): 1083.Google Scholar
  38. Sargent, J.R., 1976, Marine wax esters, Sci. Progr. Oxford, 65: 637.Google Scholar
  39. Schaefer, M.B., 1954, Some aspects of the dynamics of populations important to the management of commercial marine fisheries, Bull. inter-Amer. trop. Tuna Comm., 1: 26.Google Scholar
  40. Sharp, G.D., Ecological efficiency and activity metabolism, This volume.Google Scholar
  41. Sharp, G.D., and Dotson, R.C., 1977, Energy for migration in albacore, Thunnus alalunga, Fish. Bull. nat. mar. Fish. Serv., 75: 447.Google Scholar
  42. Sharp, G.D., and Francis, R.C., 1976, An energetics model for the exploited yellowfin tuna, Thunnus albacares, population in the eastern Pacific Ocean, Fish. Bull. nat. mar. Fish. Serv., 74: 36.Google Scholar
  43. Sheldon, R.W., Prakash, A., and Sutcliffe, W.H., 1972, The size distribution of particles in the oceans, Limnol. Oceanogr., 17: 327.CrossRefGoogle Scholar
  44. Silvert, W., and Piatt, T., 1980, Dynamic energy-flow model of the particle size distribution in pelagic ecosystems, in: “Evolution and Ecology of Zooplankton Communities”, W.C. Kerfoot, ed., University Press of New England, Hanover, New Hampshire.Google Scholar
  45. Solomon, M.E., 1949, The natural control of animal populations, J. Animal Ecol., 18: 1.CrossRefGoogle Scholar
  46. Steele, J.H., and Frost, B.W., 1977, The structure of plankton communities, Phil. Trans. Roy. Soc. London, B 280: 485.CrossRefGoogle Scholar
  47. Strickland, J.D.H., 1967, Between beakers and bays. New Scientist, London, 33: 276.Google Scholar
  48. Thiel, H., 1975, The size structure of the deep-sea benthos, Int. Revue ges. Hydrobiol., 60: 575.Google Scholar
  49. Ulanowicz, R.E., Community measures of marine food webs and their possible applications, This volume.Google Scholar
  50. Ursin, E., 1979, Population dynamics and fish behaviour, Invest. Pesquera, 43: 171.Google Scholar
  51. Ursin, E., In press, Multispecies fish stock and yield assessment in I.C.E.S., Can. spec. Publ. Fish. aquat. Sci.Google Scholar
  52. Van Valen, L., 1973, Body size and numbers of plants and animals, Evolution, 27: 27.CrossRefGoogle Scholar
  53. Volkman, J.K., Corner, E.D.S., and Eglinton, G., 1980, Transformations of biolipids in the marine food web and in the underlying bottom sediments, Colloque international de C.N.R.S., Marseille, 1979, 185.Google Scholar
  54. Ware, D.M., 1975, Growth, metabolism, and optimal swimming speed of a pelagic fish, J. Fish. Res. Bd Can., 32: 33.CrossRefGoogle Scholar
  55. Ware, D.M., 1980, Bioenergetics of stock and recruitment, Can. J. Fish. aquat. Sci., 37: 1012.CrossRefGoogle Scholar
  56. Williams, P. Le B., Bacterial production in the marine food chain; the emperor’s new suit of clothes?, This volume.Google Scholar
  57. Williams, R.C., An overview of secondary production in pelagic ecosystems, This volume.Google Scholar
  58. Wilson, D.S., 1973, Food size selection among copepods, Ecology, 54: 909.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. B. L. Matthews
    • 1
  • A. L. Alldredge
    • 2
  • R. L. Haedrich
    • 3
  • J. Paloheimo
    • 4
  • L. Saldanha
    • 5
  • G. D. Sharp
    • 6
  • E. Ursin
    • 7
  1. 1.Institute of Marine BiologyUniversity of BergenBlomsterdalenNorway
  2. 2.Marine Sciences InstituteUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Memorial University of NewfoundlandSt John’sCanada
  4. 4.Department of ZoologyUniversity of TorontoOntarioCanada
  5. 5.Lab. de Zoologia (Museu Bocage)Faculdade de CienciasLisbonPortugal
  6. 6.FAORomeItaly
  7. 7.Danish Institute for Fisheries and Marine ResearchCharlottenlundDenmark

Personalised recommendations