• T. T. Packard
  • C. Joiris
  • P. Lasserre
  • H. J. Minas
  • M. Pamatmat
  • A. R. Skjoldal
  • R. E. Ulanowicz
  • J. H. Vosjan
  • R. M. Warwick
  • P. J. B. Le Williams
Part of the NATO Conference Series book series (NATOCS, volume 13)


The respiration working group conducted nine discussions. Each was led by a working group member after presenting his recent ideas and results. The discussions focused on topics that facilitated achieving the following objectives:
  1. 1.

    to develop a fundamental definition of respiration that is accurate and descriptive at all levels of biological organization.

  2. 2.

    to review the limitations and strengths of current methods of measuring respiration.

  3. 3.

    to identify areas for the potential application of new technology.

  4. 4.

    to identify “user interest” in respiration measurements (i.e., the modeling community) and how dimensions, time-scale, and space -scale effects the “usefulness” of a respiration measurement.

  5. 5.

    to determine the feasibility of developing a unifying model of respiration that can be applied to different organisms, communities, and ecosystems.

  6. 6.

    to assess the compatibility of the results of respiration studies with the results of other process studies.

  7. 7.

    to summarize the state of knowledge of respiration, to identify the limitations of that knowledge, and to recommend research for the next decade.



Allometric Equation Community Respiration Cumulative Respiration Work Group Member Unify Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, D.E., 1968, Regulation of enzyme function, Ann. Rev. Micro Biol., 23: 47.CrossRefGoogle Scholar
  2. Atkinson, D.E. 1977, “Cellular energy metabolism and its regulation” Academic Press, New York.Google Scholar
  3. Bertalanffy, L.V. 1964, Basic concepts in quantitative biology of metabolism, Helgol. Wiss, Meeresunters, 9: 5CrossRefGoogle Scholar
  4. Castell, C., Wagensberg, J., Tejero, A., and Vallespinós, F., 1981, Identificatión de las fases metabólicas en termogramas de cultivos bacterianos, Inv. Pesq., 45:291Google Scholar
  5. Christensen, J.P., and Packard, T.T., 1977, Sediment metabolism from the northwest African upwelling system, Deep-Sea Res., 24:331.CrossRefGoogle Scholar
  6. Craig, H., 1971, The deep metabolism: oxygen consumption in abyssal ocean water, J. Geophys. Res., 76:5078CrossRefGoogle Scholar
  7. Jacobus, W.E., Moreadith, R.W., and Vandegaer, K.M., 1982, Mitochondrial respiratory control, J. Biol. Chem., 257:2397Google Scholar
  8. Jenkins, W.J., 1980, Tritium and in the Sargasso Sea, J. Mar. Res., 38:533.Google Scholar
  9. Joiris, C., Billen, G., Lancelot, C., Daro, K.H., Mommaerts, J. P., Hecq, J.H., Bertels, A., Bossicart, M., and Nijs, J., 1982, A budget of carbon cycling in the Belgian coastal zone: Relative roles of zooplankton, bacterioplankton and benthos in the utilization of primary production, Neth. J. Sea Res., 16:260.CrossRefGoogle Scholar
  10. Klekowski, R.Z., 1977, Microrespirometer for shipboard measurements of metabolic rate of microzooplankton, Pol. Arch. Hydrobiol., 24-Suppl.:455.Google Scholar
  11. Klekowski, T.Z., Kukina, I.V., Tumanseva, N.I. 1977, Respiration in the microplankton of the equatorial upwellings in the eastern Pacific Ocean, Pol. Arch. Hydrobiol., 24-Suppl.:467Google Scholar
  12. Laybourn-Parry, J., Baldock, B., and Kingmill-Robinson, C., 1980, Respiratory studies on two small freshwater amoebae, Microb. Ecol., 6:20–9216.CrossRefGoogle Scholar
  13. Olánczuk-Neyman, K.M., and Vosjan, J.H., 1977, Measuring respiratory electron-transport system activity in marine sediment, Neth. J. Sea Res., 11:1CrossRefGoogle Scholar
  14. Packard, T.T., 1971, The measurement of respiratory electron transport activity in marine phytoplankton, J. Mar. Res., 29:235Google Scholar
  15. Packard, T.T., 1979, Respiration and respiratory electron transport activity in plankton from the Northwest African upwelling area, J. Mar. Res., 37:711.Google Scholar
  16. Packard, T.T., Minas, H.J., Owens, T., and Devol, A., 1977, Deep-sea metabolism in the eastern tropical north Pacific Ocean, in: “Oceanic Sound Scattering Predictions” N.R. Andersen and B.J. Zahuranec, eds., Plenum, New York.Google Scholar
  17. Packard, T.T., Garfield, P.C., and Codispoti, L.A., In press, Oxygen consumption and denitrification below the Peruvian upwelling, in: “Coastal Upwelling: It’s Sediment Record,” E. Suess, ed., Plenum, New York.Google Scholar
  18. Pamatmat, M.M., 1982a, Heat production by sediment: Ecological significance, Science, 215:395CrossRefGoogle Scholar
  19. Pamatmat, M.M., 1982b, Direct calorimetry in benthos and geochemical research, in: “The Dynamic Environment of the Ocean Floor,” K.S. Fanning and F. Manheim, eds., Lexington Books, Toronto.Google Scholar
  20. Pamatmat, M.M., In press, Simultaneous direct and indirect calorimetry, in: “Handbook on Polarographic oxygen sensors: aquatic and physiological applications,” E. Graiger, H. Forstner, eds., Springer, Berlin.Google Scholar
  21. Price, R., and Warwick, R.M., 1980, The effects of temperature on the respiration rate of meiofauna, Oecologia (Berl.), 44:145CrossRefGoogle Scholar
  22. Schmidt-Nielsen, K., 1970, Energy metabolism, body size and problems of scaling, Fed. Proc., 29–1524.Google Scholar
  23. Skjoldal, H.R., and Lännergren, C., 1978, The spring phytoplankton bloom in Lindaspollene, a land-locked Norwegian fjord. II. Biomass and activity of net and nanoplankton, Mar. Biol., 47:313.CrossRefGoogle Scholar
  24. Ulanowicz, R.E., and Kemp, W.M., 1979, Towards canonical trophic aggregations, Amer. Naturalist, 114:871.CrossRefGoogle Scholar
  25. Wagensberg, J., Castell, C., Torra, V., Rodellar, J., and Vallespinós 1978, Estudio microcalorimetrico del metabolismo de bacterias marinas: detección de procesos ritmicos, Inv. Presq., 42:179.Google Scholar
  26. Williams, P.J. Le B., and Jenkinson, J.W., 1982, A transportable microprocessor-controlled precise Winkler titration suitable for field station and shipboard use, Limnol. Oceanogr., 27:576.CrossRefGoogle Scholar
  27. Zeuthen, E., 1943, A cartesian diver micro-respirometer with a gas volume of 0.1 μl, Compt.-rend. Lab. Carlsberg Sér. Chim. 24:479.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • T. T. Packard
    • 1
  • C. Joiris
    • 2
  • P. Lasserre
    • 3
  • H. J. Minas
    • 4
  • M. Pamatmat
    • 5
  • A. R. Skjoldal
    • 6
  • R. E. Ulanowicz
    • 7
  • J. H. Vosjan
    • 8
  • R. M. Warwick
    • 9
  • P. J. B. Le Williams
    • 10
  1. 1.Bigelow Laboratory for Ocean SciencesHarbourUSA
  2. 2.Fac. Wetenschappen, Lab. voor Ekologie en SystematikUniversity of BrusselsBrusselBelgium
  3. 3.Station Biologique d’ArcachonUniversite de BordeauxArcachonFrance
  4. 4.Laboratoire d’OceanographieFaculte des Sciences de LuminyMarseille Cedex 2France
  5. 5.Triburon Center for Environmental StudiesSan Francisco State UniversityTiburonUSA
  6. 6.Institute of Marine ResearchNordnes, BergenNorway
  7. 7.Chesapeake Biological LaboratoryUniversity of MarylandSolomonsUSA
  8. 8.Netherlands Institute for Sea ResearchTexelThe Netherlands
  9. 9.Institute for Marine Environmental ResearchPlymouth, DevonUK
  10. 10.Department of OceanographyThe UniversitySouthampton, HampshireUK

Personalised recommendations