Studies on Marine Autotrophs: Recommendations for the 1980s

  • L. Legendre
  • Y. Collos
  • M. Elbrächter
  • M. J. R. Fasham
  • W. W. C. Gieskes
  • A. Herbland
  • P. M. Holligan
  • R. Margalef
  • M. J. Perry
  • T. Platt
  • E. Sakshaug
  • D. F. Smith
Part of the NATO Conference Series book series (NATOCS, volume 13)


There was agreement among members of the working group that, in the next 5–10 years, the process-oriented focus of field studies should be maintained. This orientation is viewed as a third phase in the historical evolution of modern biological oceanography, in which the regional studies of the 1940s and 1950s identified the important classes of biological oceanographic processes, and which were followed by a period during the late 1960s and 1970s when intensive laboratory studies of the physiology, biochemistry and behaviour of single species were emphasized. More recently, there has been a tendency for the scientists to go back into the field and to apply the conceptual understanding and the methods developed in the laboratory to natural systems. The purpose of the process-oriented field studies over the next 5–10 years is to understand better the mechanisms by which both environmental and biological forcing act upon autotrophs to regulate their production rates, biomass and species composition. The scales in environmental forcing functions among different regions in the ocean should be carefully considered in the context of understanding the coupling with autotrophic processes.


Marine Phytoplankton Skeletonema Costatum Growth Rate Estimate Phytoplankton Growth Rate Phytoplankton Ecology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubert, M., Gauthier, M., Aubert, J., and Bernhard, P., 1981, Les systèmes d’information des microorganismes marins. Leur rôle dans l’équilibre biologique, Rev. int. Océanogr. méd., 231 p.Google Scholar
  2. Auclair, J.C., Demers, S., Fréchette, M., Legendre, L., and Trump, C.L., 1982. High frequency endogenous periodicities of chlorophyll synthesis in estuarine phytoplankton, Limnol. Oceanogr., 27: 348.CrossRefGoogle Scholar
  3. Collos, Y., and Slawyk, G., 1980, Nitrogen uptake and assimilation by marine phytoplankton, in: “Primary productivity in the sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  4. Copin-Amieil, C., 1974, Contribution à l’étude chimique des particules en suspension dans l’eau de mer, Thèse Doct. ès Sciences, Univ. Paris VI.Google Scholar
  5. Doty, M.S., 1955, Current status of carbon-14 method of assaying productivity of the ocean, Rep. Congr. atom. Energy Comm. U.S. Contr. At (04–3)-15.Google Scholar
  6. Dubois, D.M., 1975, A model of patchiness for prey-predator plankton populations, Ecol. Model., 1: 67.CrossRefGoogle Scholar
  7. Dugdale, R.C., 1977, Modeling, in: “The sea,” Vol. 6, E.D. Goldberg, I.N. McCave, J.J. O’Brien, and J.H. Steele, eds., Wiley-Inter-science, New York.Google Scholar
  8. Elbrächter, M., 1977, On population dynamics in multi-species cultures of diatoms and dinoflagellates, Helgolander wiss. Meeresunters, 30: 192.CrossRefGoogle Scholar
  9. Elbrächter, M., and Boje, R., 1978, On the ecological significance of Thalassiosira partheneia in the northwest African upwelling area, in: “Upwelling Ecosystems,” R. Boje and M. Tomczak, eds, Springer, Berlin.Google Scholar
  10. Eppley, R.W., 1972, Temperature and phytoplankton growth in the sea, Fish Bull. U.S., 70: 1063.Google Scholar
  11. Falkowski, P.G., 1980, Light and shade adaptation in marine phytoplankton, in: “Primary productivity in the sea,” P. G. Falkowski, ed., Plenum Press, New York.Google Scholar
  12. Fasham, M.J.R., Holligan, P.M. and Pugh, P.R., In press, The spatial and temporal development of the spring phytoplankton bloom in the Celtic Sea, April 1979, Prog. Qceanogr. Google Scholar
  13. Fasham, M.J.R., and Platt, T. ms., Photosynthetic response of phytoplankton to light: a physiological model, submitted for publication.Google Scholar
  14. Fortier, L., and Legendre, L., 1979, Le contrôle de la variabilité à court terme du phytoplancton estuarien: stabilité verticale et profondeur critique, J. Fish. Res. Board Can., 36: 1325.CrossRefGoogle Scholar
  15. Gallegos, C.L., Hornberger, G.M., and Kelly, M.G., 1980, Photosynthesis-light relationships of a mixed culture of phytoplankton in fluctuating light, Limnol. Qceanogr., 25: 1082.CrossRefGoogle Scholar
  16. Gieskes, W.W.C., Kraay, G.W., and Baars, M.A., 1979, Current 14C methods for measuring primary production: gross underestimates in oceanic waters, Neth. J. Sea Res., 13: 58.CrossRefGoogle Scholar
  17. Glibert, P.M., and Goldman, J.C., 1981, Rapid ammonium uptake by marine phytoplankton, Mar. Biol. Letters, 2: 25.Google Scholar
  18. Gundersen, K., 1973, In situ determination of primary production by means of a new incubator ISIS, Helgol. wiss. Meeresunters., 24: 465.CrossRefGoogle Scholar
  19. Helmstetter, C.E., 1969, Regulation of chromosome replication and cell division in Escherichia coli, in: “The cell cycle,” G.M. Padilla, G.L. Whiston, and I.L. Cameron, eds., Academic Press, New York and London.Google Scholar
  20. Jackson, G.A., 1980, Phytoplankton growth and zooplankton grazing in oligotrophic oceans, Nature, 284: 439.CrossRefGoogle Scholar
  21. Jassby, A., and Powell, T., 1975, Vertical patterns of eddy diffusion during stratification in Castle Lake, California, Limnol. Oceanogr., 20: 530.CrossRefGoogle Scholar
  22. Jensen, A., and Sakshaug, E., 1973, Studies on the phytoplankton ecology of the Trondheimfjord. II. Chloroplast pigments in relation to abundance and physiological state of the phytoplankton, J. exp. mar. Biol.Ecol., 11: 137CrossRefGoogle Scholar
  23. Kalff, J., and Knoechel, R., 1978, Phytoplankton and their dynamics in oligotrophic and eutrophic lakes, Ann. Rev. Ecol. Syst., 9: 475.CrossRefGoogle Scholar
  24. Kiefer, D.A., and Kremer, J.N., 1981, Origins of vertical patterns of phytoplankton and nutrients in the temperate, open ocean: a stratigraphic hypothesis, Deep-Sea Res., 28: 1087.CrossRefGoogle Scholar
  25. Lancelot, C., 1979, Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the southern North Sea, as determined by short-term kinetics, Mar. Ecol. Prog. Ser., 1: 179.CrossRefGoogle Scholar
  26. LIMER 1975 Expedition Team, 1976, Metabolic processes of coral reef communities at Lizard Island, Queensland, Search (Syd.), 7: 463.Google Scholar
  27. Margalef, R., 1973, Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanol. Acta, 1: 493.Google Scholar
  28. Margalef, R., and Estrada, M., 1980, Les áreas oceánicas más productivas, Investigatión y Ciencla (Spanish Edition of Scientific American), Oct. 1980: 8.Google Scholar
  29. McCarthy, J.J., and Goldman, J.C., 1979, Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters, Science, 203: 670.CrossRefGoogle Scholar
  30. Myklestad, S., 1977, Production of carbohydrates by marine plank-tonic diatoms. II. Influence of the N/P ratio in the growth medium on the assimilation ratio, growth rate, and production of cellular and extracellular carbohydrates by Chaetoceros affinis var. willei (Gran) Hustedt and Skeletonema costatum (Grev.) Cleve, J. exp, mar. Biol. Ecol., 29: 161.CrossRefGoogle Scholar
  31. Peterson, B.J., 1980, Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem, Ann. Rev. Ecol. Syst., 11: 359CrossRefGoogle Scholar
  32. Pingree, R.D., Mardell, G.T., Holligan, P.M., Griffiths, D.K., Smithers, J., 1982, Celtic Sea and Armorican Current structure and the vertical distributions of temperature and chlorophyll, Cont. Shelf Res., 1: 99.CrossRefGoogle Scholar
  33. Platt, T., and Herman, A.W., In Press, Remote sensing of phytoplankton in the sea: surface layer chlorophyll as an estimate of water-column chlorcphyll and primary production, Int. J. Remote Sensing.Google Scholar
  34. Redalje, D.G., and Laws, E.A., 1981, A new method for estimating phytoplankton growth rates and carbon biomass, Mar. Biol., 62: 73.CrossRefGoogle Scholar
  35. Riley, G.A., Stommel, H., and Bumpus, D.F., 1949, Quantitative ecology of the plankton of the western North Atlantic, Bull. Bingham oceanogr. Coll., 12: 1.Google Scholar
  36. Sakshaug, E., 1977, Limiting nutrients and maximum growth rates for diatoms in Narragansett Bay, J. exp. mar. Biol. Ecol. 28: 109.CrossRefGoogle Scholar
  37. Sakshaug, E., and Holm-Hansen, O., 1977, Chemical composition of Skeletonema costatum (Grev.) Cleve and Pavlova (Monochrysis) lutheri (Droop) Green as a function of nitrate-, phosphate-, and iron- limited growth, J. exp. mar. Biol. Ecol., 29: 1.CrossRefGoogle Scholar
  38. Sakshaug, E., and Myklestad, S., 1973, Studies on the phytoplankton ecology of the Trondheimfjord. III. Dynamics of phytoplankton blooms in relation to environmental factors, bioassay experiments and parameters for the physiological state of the population, J. exp. mar. Biol. Ecol., 11: 157.CrossRefGoogle Scholar
  39. Sakshaug, E., Myklestad, S., Andersen, K., Hegseth, E.N., and Jørgensen, L., 1981, Phytoplankton off the Møre coast in 1975–1979: distribution, species composition, chemical composition and conditions for growth, in: “Proceedings of the Symposium on the Norwegian Coastal Current,” Geito, Sept. 1980, Univ. Bergen.Google Scholar
  40. Savidge, G., 1981, Studies of the effects of small-scale turbulence on phytoplankton, J. mar. biol. Ass. U.K., 61: 477.CrossRefGoogle Scholar
  41. Sharp, J.H., Underbill, P.A., and Frake, A.C., 1980, Carbon budgets in batch and continuous cultures: how can we understand natural physiology of marine phytoplankton?, J. Plankton Res., 2: 213.CrossRefGoogle Scholar
  42. Smith, A.E., and Morris, I., 1980, Pathways of carbon assimilation in phytoplankton from the Antarctic Ocean, Limnol. Oceanogr., 25: 865.CrossRefGoogle Scholar
  43. Smith, D.F., 1982, Observations and quantitative analysis of curvilinear regions of time-varying oxygen concentrations with an oxygen electrode and a minicomputer, J. exp. mar. Bio. Ecol., 64: 117.CrossRefGoogle Scholar
  44. Smith, R.C., Eppley, R.W., and Baker, K.S., 1982, Correlation of primary production as measured aboard ship in Southern California coastal waters and as estimated from satellite chlorophyll images, Mar. Biol., 66: 281.CrossRefGoogle Scholar
  45. Steele, J.H., 1974, “The structure of marine ecosytems,” Harvard Univ. Press, London.Google Scholar
  46. Stoecker, D., Guillard, R.R.D., and Kavee, R.M., 1981, Selective predation by Favella ehrenbergii (Tintinnida) on and among dinoflagellates, Biol. Bull., 160: 136.CrossRefGoogle Scholar
  47. Strickland, J.D.H., 1965, Production of organic matter in the primary stages of marine food chain, in.: “Chemical oceanography,” J.P. Riley and G. Dkirrow, eds., Academic Press, London.Google Scholar
  48. Venrick, E.L., Beers, J.R., and Heinbokel, J.F., 1977, Possible consequences of containing microplankton for physiological rate measurements, J. exp. mar. Biol. Ecol., 26: 55.CrossRefGoogle Scholar
  49. Vincent, W.F., 1980, Mechanisms of rapid photosynthetic adaption in natural phytoplankton communities. II. Changes in photochemical capacity as measured by DCMU-enhanced chlorophyll fluorescence, J. Phycol., 16: 568.CrossRefGoogle Scholar
  50. Walsh, P., and Legendre, L., 1982, Effets des fluctuations rapides de la lumière sur la photosynthèse du phytoplancton, J. Plankton Res., 4: 313CrossRefGoogle Scholar
  51. Williams, F.M., 1971, Dynamics of microbial populations, in: “Systems analysis and simulation in ecology,” Vol. 1, B.C. Patten, ed., Academic Press, New York.Google Scholar
  52. Yentsch, C.S., and Phinney, D.A., 1982, The use of attenuation of light by particulate matter for the estimation of phytoplankton chlorophyll with reference to the coastal zone scanner, J. Plankt. Res., 4: 93.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • L. Legendre
    • 1
  • Y. Collos
    • 2
  • M. Elbrächter
    • 3
  • M. J. R. Fasham
    • 4
  • W. W. C. Gieskes
    • 5
  • A. Herbland
    • 6
  • P. M. Holligan
    • 7
  • R. Margalef
    • 8
  • M. J. Perry
    • 9
  • T. Platt
    • 10
  • E. Sakshaug
    • 11
  • D. F. Smith
    • 12
  1. 1.GIROQ, Dép. biologieUniversité LavalCanada
  2. 2.Laboratoire d’OcéanographieMarseille Cedex 9France
  3. 3.Biologisches Anstalt Helgoland, LitoralstationListF. D. R.
  4. 4.Institute of Oceanographic SciencesWormley, Godalming, SurreyUK
  5. 5.Netherlands Institute for Sea ResearchTexelThe Netherlands
  6. 6.Antenne OrstomCentre Océanologique de BretagneBrest CedexFrance
  7. 7.The LaboratoryMarine Biological Association of the U.K.Plymouth, DevonUK
  8. 8.Departamento de Ecologia, Facultad de BiologiaUniversidad de BarcelonaBarcelona 7Spain
  9. 9.School of OceanographyWB-10 University of WashingtonSeattleUSA
  10. 10.Marine Ecology LaboratoryBedford Institute of OceanographyDartmouthCanada
  11. 11.Institute for Marine BiochemistryUniversity of TrondheimTrondheim-NTHNorway
  12. 12.CSIRO Division of Fisheries and OceanographyNorth BeachAustralia

Personalised recommendations