The Supply of Food to the Benthos

  • Victor Smetacek
Part of the NATO Conference Series book series (NATOCS, volume 13)


The food supply of the bulk of the marine benthos is provided by the downward transport of organic matter produced by phytoplankton in the surface layer. The importance for the benthos of this vertical transfer of matter and energy from the pelagic to the benthic system has been recognised for a long time, although only recently has effort been devoted towards measuring this vertical flux. In the past, there has been a widespread tendency amongst aquatic ecologists to regard sedimentation out of the pelagic community as an elimination of waste products and hence of little direct consequence to the functioning of the pelagic system. However, results obtained during the last decade from direct monitoring of the export of particulate matter out of the pelagic system with sediment traps now necessitate a revisai of earlier concepts. At present, attention is still centered primarily on measuring rates of sedimentation and examining the nature of this material rather than on elucidating the mechanisms governing the export of biogenous material from the surface layer. Thus, the ecological processes regulating magnitude and quality of the benthic food supply are still not well documented, and most of the available information is of an indirect nature.


Particulate Organic Carbon Fecal Pellet Sediment Trap Spring Bloom Vertical Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge, A., 1983, The quantitative significance of gelatinous organisms as Zooplankton predators, this volume.Google Scholar
  2. Angel, M.V., 1983, Detrital organic fluxes through pelagic ecosystems, this volume.Google Scholar
  3. Ankar, S., 1980, Growth and production of Macoma halthica (L.) in a northern Baltic soft bottom, Ophelia, Suppl. 1: 31.Google Scholar
  4. Ansell, A.D., 1974, Sedimentation of organic detritus in Lochs Etive and Creran, Argyll, Scotland, Mar. Biol., 27: 263.CrossRefGoogle Scholar
  5. Bienfang, P.K., 1979, A new phytoplankton sinking rate method suitable for field use, Deep-Sea Res., 26/6A: 719.CrossRefGoogle Scholar
  6. Bienfang, P.K., 1982, Phytoplankton sinking-rate dynamics in enclosed experimental ecosystems, in; “Marine Mesocosms”, G. D. Grice and M.R. Reeve, eds., Springer-Verlag, New York.Google Scholar
  7. Blomqvist, S., and Hakanson, L., 1981, A review on sediment traps in aquatic environments, Arch. Hydrobiol., 91; 101.Google Scholar
  8. Bodungen, B. von, 1975, Der Jahresgang der Nährsalze und der Primärproduktion des Planktons in der Kieler Bucht unter Berücksichtigung der Hydrographie, Ph. D. Thesis, Univ. Kiel, Kiel.Google Scholar
  9. Bodungen, B. von, Bröckel, K. von, Smetacek, V., and Zeitzschel, B., 1981, Growth and sedimentation of the phytoplankton spring bloom in the Bornholm Sea (Baltic Sea), Kieler Meeresforsch., Sonderh. 5: 49.Google Scholar
  10. Bölter, M., in press, Seasonal variation in microbial biomass production and related carbon flux in Kiel Fjord, Mar. Ecol.Google Scholar
  11. Coachman, L.K., and Walsh, J.J., 1981, A diffusion model of cross-shelf exchange of nutrients in the southeastern Bering Sea, Deep-Sea Res., 28A; 819.CrossRefGoogle Scholar
  12. Creutzberg, F., Wapenaar, P., Duineveld, G., and Lopez, N.L., in press, Distribution and density of the benthic fauna in the southern North Sea in relation to bottom characteristic and hydrographic conditions, Rapp. Proc. — Verb. Cons. Int. Explor. Mer.Google Scholar
  13. Dagg, M.J., Vidal, J.J., Whitledge, T.E., Iverson, R.L., and Goering, J.J., 1982, The feeding, respiration, and excretion of Zooplankton in the Bering Sea during a spring bloom, Deep-Sea Res., 29: 45.CrossRefGoogle Scholar
  14. Dugdale, R.C., and Goering, J.J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol.Oceanogr., 12: 196.CrossRefGoogle Scholar
  15. Eppley, R.W., Holmes, R.W., and Strickland, J.D.H., 1967, Sinking rates of marine phytoplankton measured with a fluorometer, J. Exp. Mar. Biol. Ecol., 1: 191.CrossRefGoogle Scholar
  16. Eppley, R.W., Renger, E.H., and Harrison, W.G., 1979, Nitrate and phytoplankton production in southern California coastal waters, Limnol. Oceanogr., 24: 483.CrossRefGoogle Scholar
  17. Fransz, H.G., and Gieskes, W.W.C., in press, The imbalance of phytoplankton production and copepod production in the North Sea, Rapp. Proc.-Verb. Cons. Int. Explor. Mer.Google Scholar
  18. Gardner, W.D., 1980a, Field assessment of sediment traps, J. Mar. Res., 38: 41.Google Scholar
  19. Gardner, W.D., 1980b, Sediment trap dynamics and calibration: a laboratory evaluation, J. Mar. Res., 38: 17.Google Scholar
  20. Gieskes, W.W.C., 1983, The state-of-the-art of primary production measurements, this volume.Google Scholar
  21. Graf, G., Bengtsson, W., Diesner, U., Schulz, R., and Theede, H., 1982, Benthic response to sedimentation of a spring phytoplankton bloom: process and budget, Mar. Biol. 67: 201.CrossRefGoogle Scholar
  22. Hanson, R.B., Tenore, K.R., Bishop, S., Chamberlain, C., Pamatmat, M.M., and Tietjen, J., 1981, Benthic enrichment in the Georgia Bight related to Gulf Stream intrusions and estuarine out-welling, J. Mar. Res., 39: 417.Google Scholar
  23. Hargrave, B.T., 1975, The importance of total and mixed-layer depth in the supply of organic material to bottom communities, Symp. Biol. Hung., 15: 157.Google Scholar
  24. Hargrave, B.T., 1980, Factors affecting the flux of organic matter to sediments in a marine bay in: “Marine Benthic Dynamics,” K.R. Tenore and B.C. Coull, eds., University of South Carolina Press, Columbia, S.C.Google Scholar
  25. Hargrave, B.T., and Taguchi, S., 1978, Origin of deposited material sedimented in a marine bay, J. Fish. Res. Board Can., 35: 1604.CrossRefGoogle Scholar
  26. Hargrave, B.T., and Burns, N.M., 1979, Assessment of sediment trap collection efficiency, Limnol. Oceanogr., 24: 1124.CrossRefGoogle Scholar
  27. Holligan, P.M., 1979, Dinoflagellate blooms associated with tidal fronts around the British Isles, in: “Toxic dinoflagellate blooms,” D.L. Seliger, ed., Elsevier, North Holland.Google Scholar
  28. Honjo, S., in press, Seasonality and interaction of biogenic and lithogenic particulate flux at Panama Basin, Science. Google Scholar
  29. Høpner Petersen, G., in press, Energy flow in comparable aquatic ecosystems from different climatic zones, Rapp. Proc.-Verb. Cons. Int. Explor. Mer.Google Scholar
  30. Høpner Petersen, G., and Curtis, M.A., 1980, Differences in energy flow through major components of subarctic, temperate and tropical shelf ecosystems, Dana, 1: 53.Google Scholar
  31. Iseki, K., 1981, Particulate organic matter transport to the deep sea by salp fecal pellets, Mar. Ecol. Progr. Ser., 5:55.CrossRefGoogle Scholar
  32. Jewson, D.H., Rippey, B.H., and Gilmore, W.K., 1981, Loss rates from sedimentation, parasitism and grazing during the growth, nutrient limitation, and dormancy of a diatom crop, Limnol.Oceanogr., 26: 1045.CrossRefGoogle Scholar
  33. Johannes, R.E., and Satomi, M., 1966, Composition and nutritive value of fecal pellets of a marine crustacean, Limnol. Oceanogr. 11: 191.CrossRefGoogle Scholar
  34. Kautsky, N. and Wallentinus, I., 1980, Nutrient release from a Baltic Mytilus-red algal community and its role in benthic and pelagic productivity, Ophelia, Suppl. 1: 17.Google Scholar
  35. Kemp, W.M., Wetzel, R.L., Boynton, W.R., D’Ella, C.F., and Stevenson, J.C., 1982, Nitrogen cycling and estuarine interfaces: some current concepts and research directions, in: “Estuarine Comparisons,” V.S. Kennedy, ed., Academic Press, New York.Google Scholar
  36. Krause, M., 1981, Vertical distribution of fecal pellets during FLEX ‘76, Helgoländer Meeresunters., 34: 313.CrossRefGoogle Scholar
  37. Kuparinen, J., Leppanen, J.-M., Sarvala, J., Sundberg, A., and Virtanen, A., in press, Production and utilization of organic matter in a Baltic ecosystem off Tvärminne, SW coast of Finnland, Rapp. Proc.-Verb. Cons. Int. explor. Mer.Google Scholar
  38. Lännergren C., 1979, Buoyancy of natural populations of marine phytoplankton, Mar. Biol., 54: 1.CrossRefGoogle Scholar
  39. Mahoney, J.B., and Steimle Jr., F.W., 1979, A mass mortality of marine animals associated with a bloom of Ceratium tripos in the New York Bight, in: “Toxic dinoflagellate blooms,” D.L. Taylor, and H.H. Seliger, eds., Elsevier, North Holland.Google Scholar
  40. Malone, T.C., 1978, The 1976 Ceratium tripos bloom in the New York Bight: causes and consequences, NOAA Tech. Rep. NMFS Circ. 410.Google Scholar
  41. Mann, K.H., 1981, The classes of models in biological oceanography in: “Mathematical Models in Biological Oceanography,” T. Platt, K.H. Mann, and R.E. Ulanowicz, eds., The Unesco Press, Paris.Google Scholar
  42. Margalef, R., 1978, Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanol. Acta, 1: 493.Google Scholar
  43. Marshall, S.M., and Orr, A.P., 1972, “The Biology of a Marine Copepod,”, Oliver and Boyd, London.Google Scholar
  44. McCave, I.N., 1975, Vertical flux of particles in the ocean, Deep Sea Res., 22: 491.Google Scholar
  45. Mills, E.L., 1975, Benthic organisms and the structure of marine ecosystems, J. Fish. Res. Board Can., 32: 1657.CrossRefGoogle Scholar
  46. Mills, E.L., 1980, The structure and dynamics of shelf and slope ecosystems off the North East coast of North America, in: “Marine Benthic Dynamics,” K.R. Tenore and B.C. Coull, eds., University of South Carolina Press, Columbia, S.C.Google Scholar
  47. Mills, E.L., Pittman, K., and Tan, F.C., in press, Food web structure on the Scotian shelf, Eastern Canada: A study using 13C as a food-chain tracer, Rapp. Proc. -Verb. Cons. Int. Explor.Mer.Google Scholar
  48. Müller, P.J., and Suess, E., 1979, Productivity, sedimentation rate and sedimentary organic matter in the oceans. I. Organic carbon preservation, Deep-Sea Res., 26A 1347.CrossRefGoogle Scholar
  49. Müller, P.J., and Mangini, 1979, Productivity, sedimentation rate and sedimentary organic matter in the oceans. III. Organic carbon decomposition rates, Earth Planet. Sci. Lett., 51: 94.CrossRefGoogle Scholar
  50. Paffenhöfer, G.A. and Knowles, S.C., 1979, Ecological implications of fecal pellet size, production and consumption by copepods, J. Mar. Res., 37: 35.Google Scholar
  51. Parsons, T.R., 1979, Some ecological, experimental and evolutionary aspects of the upwelling ecosystem, S. Afr. J. Sci. 75: 536.Google Scholar
  52. Parsons, T.R., Takahashi, M., and Hargrave, B.T., 1977, “Biological Oceanographic Processes,” 2nd ed., Pergamon, Oxford.Google Scholar
  53. Peinert, R., Saure, A., Stegmann, P., Stienen, C., Haardt, H., and Smetacek, V., 1982, Dynamics of primary production and sedimentation in a coastal ecosystem, Neth. J. Sea Res. 16:276.CrossRefGoogle Scholar
  54. Pingree, R.D., Holligan, P.M. and Mardell, G.T., 1978, The effects of vertical stability on phytoplankton distribution in the summer on the northwest European shelf, Deep-Sea Res., 25: 1011.CrossRefGoogle Scholar
  55. Platt, H.M., 1979, Sedimentation and the distribution of organic matter in a sub-Antarctic marine Bay, Estuar. Coast. Mar. Sci. 9: 51.CrossRefGoogle Scholar
  56. Platt, T. and Subba Rao, D.V., 1970, Primary production measurements on a natural plankton bloom, J. Fish. Res. Bd. Canada, 27: 887.CrossRefGoogle Scholar
  57. Platt, T., Mann, K.H., and Ulanowicz, R.E., eds., 1981, “Mathematical models in Biological Oceanography,” The Unesco Press, Paris.Google Scholar
  58. Provasoli, L., 1979, Recent progress, an overview, in: “Toxic dinoflagellate blooms,” D.L. Taylor and H.H. Seliger, eds., Elsevier, North Holland.Google Scholar
  59. Pollehne, F., 1981, Die Sedimentation organischer Substanz, Remin-eralisation und Nährsalzrückführung in einem Flachwasserökosystem, Ph.D.Thesis, Kiel Univ., Kiel.Google Scholar
  60. Raymont, J.E.G., 1980, “Plankton and productivity in the oceans. I. Phytoplankton,” Pergamon, Oxford.Google Scholar
  61. Reynolds, C.S., Thompson, J.M., Ferguson, A.J.D., Wiseman, S.W., 1982, Loss processes in the population dynamics of phytoplankton maintained in closed systems, J. Plankton Res., 4: 561.CrossRefGoogle Scholar
  62. Reynolds, C.S., and Wiseman, S.W., 1982, Sinking losses of phytoplankton in closed limnetic systems, J. Plankton Res., 4: 489.CrossRefGoogle Scholar
  63. Rowe, G.T., 1971, Benthic biomass and surface productivity, in: “Fertility of the Sea,” J.D. Costlow, ed., Gordon and Breach, London.Google Scholar
  64. Schnack, S.B., 1982, The structure of the mouth parts of copepods in Kiel Bay, Kieler Meeresforsch., 29: 89.Google Scholar
  65. Sissenwine, M.P., Cohen, E.B., and Grosslein, M.D., in press, Structure of the Georges Bank ecosystem, Rapp. Proc. -Verb. Cons. Int. Explor. Mer.Google Scholar
  66. Skjoldal, H.R., and Lännergren, C., 1978, The spring phytoplankton bloom in Lindaspollene, a land-locked Norwegian Fjord. II. Biomass and activity of net- and nanoplankton, Mar. Biol., 47: 313.CrossRefGoogle Scholar
  67. Slobodkin, L.B., 1961, “Growth and Regulation of Animal Populations,” Holt, Rinehart and Winston, New York.Google Scholar
  68. Smayda, T.J., 1970, The suspension and sinking of phytoplankton in the sea, Oceanogr. Mar. Biol. Ann. Rev., 8: 353.Google Scholar
  69. Smayda, T.J., and Boleyn, B.J., 1965, Experimental observations on the flotation of marine diatoms. I. Thalassiosira cf. nana, Thalassiosira rotula and Nitzschia seriata, Limnol. Oceanogr., 10: 499.Google Scholar
  70. Smayda, T.J., and Boleyn, B.J., 1966, Experimental observations on the flotation of marine diatoms. II. Skeletonema costatum and Rhizosolenia setigera, Limnol. Oceanogr., 11: 18.CrossRefGoogle Scholar
  71. Smetacek, V., 1980a, Annual cycle of sedimentation in relation to plankton ecology in western Kiel Bight, Ophelia, Suppl 1: 65.Google Scholar
  72. Smetacek, V., 1980b, Zooplankton standing stock, copepod fecal pellets and particulate detritus in Kiel Bight, Estuar. Coast Mar. Sci., 11: 477.CrossRefGoogle Scholar
  73. Smetacek, V., Bodungen, B. von, Bröckel, K. von, and Zeitzschel, B., 1976, The plankton tower. II. Release of nutrients from sediments due to changes in the density of bottom water, Mar. Biol., 34: 373CrossRefGoogle Scholar
  74. Smetacek, V., Bröckel, K. von, Zeitzschel, B. and Zenk, W., 1978, Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime, Mar.Biol., 47: 211.CrossRefGoogle Scholar
  75. Smetacek, V. and Hendrikson, P., 1979, Composition of particulate organic matter in Kiel Bight in relation to phytoplankton succession, Oceanol. Acta, 2: 287.Google Scholar
  76. Smetacek, V., Bodungen, B. von, Knoppers, B., Neubert, H., Pollehne, F. and Zeitzschel, B., 1980, Shipboard experiments on the effect of vertical mixing on natural plankton populations in the Central Baltic Sea, Ophelia, Suppl. 1: 77.Google Scholar
  77. Smetacek, V., Bodungen B. von, Knoppers, B., Peinert, R., Pollehne, F., Stegmann, P. and Zeitzschel, B., in press, Seasonal patterns in the structure of an inshore pelagic system, Rapp. Proc. -Verb. Cons. Int. Explor. Mer.Google Scholar
  78. Staresinic, N., Rowe, G.T., Shaughnessey, D., Williams III A.J., 1978, Measurement of the vertical flux of particulate organic matter with a free-drifting sediment trap, Limnol. Oceanogr., 23: 559.CrossRefGoogle Scholar
  79. Staresinic, N., Hovey Clifford, C. and Hulburt, E.M., in press, Role of the Southern Anchovy, Engraulis ringens, in the downward transport of particulate matter in the Peru coastal up-welling, in: “Coastal Upwelling: Its sediment record,” E. Suess and J. Thiede, eds., Plenum Press, New York.Google Scholar
  80. Steele, J.H. and Baird, I.E., 1972, Sedimentation of organic matter in a Scottish sea loch, Mem. Ist. Ital. Idrobiol., 29 (Suppl.) 73.Google Scholar
  81. Steele, J.H., 1974, “The structure of Marine Ecosystems,” Harvard Univ. Press, Cambridge, Mass.Google Scholar
  82. Stockton, W.L., and DeLaca, T.E., 1982, Food falls in the deep sea: occurrence, quality, and significance, Deep-Sea Res., 29: 157.CrossRefGoogle Scholar
  83. Taghon, G.L., Nowell, A.R.M., and Jumars P.A., 1980, Induction of suspension feeding in spionid polychaetes by high particulate fluxes, Science, 210: 562.CrossRefGoogle Scholar
  84. Titman, D., and Kilham P., 1976, Sinking in freshwater phytoplankton: some ecological implications of cell nutrient status and physical mixing processes, Limnol. Oceanogr. 21: 409.CrossRefGoogle Scholar
  85. Tufts, N.R., 1979, Molluscan transvectors of paralytic shellfish poisoning, in.: “Toxic dinoflagellate blooms,” D.L. Taylor and H.H. Seliger, eds., Elsevier, North Holland.Google Scholar
  86. Turner, J.T., 1977, Sinking rates of fecal pellets from the marine copepod Ponteila meadii, Mar. Biol., 40; 249.CrossRefGoogle Scholar
  87. Turner, J.T., and Ferrante, J.G., 1979, Zooplankton fecal pellets in aquatic ecosystems, BioScience, 29: 670.CrossRefGoogle Scholar
  88. Walsh, J.J. 1981, Shalf-sea ecosystems, in: “Analysis of marine ecosystems,” A.R. Longhurst, ed., Academic Press, London.Google Scholar
  89. Webster, T.J.M., Paranjape, M.A., and Mann, K.H., 1975, Sedimentation of organic matter in St. Margaret’s Bay, Nova Scotia, J. Fish.Res. Bd. Can., 32: 1399.CrossRefGoogle Scholar
  90. Wickstead, J.H., 1963, “An Introduction to the Study of Tropical Plankton,” Hutchinson, London.Google Scholar
  91. Williams, P.J.LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch., Sonderh. 5: 1.Google Scholar
  92. Yentsch, C.M., Yentsch, Ch. S., and Strube, L.R., 1977, Variations in ammonium enhancement, an indication of nitrogen deficiency in New England coastal phytoplankton populations, J. Mar. Res., 35: 537.Google Scholar
  93. Zeitzschel, B., 1965, Zur Sedimentation von’ Seston, eine produktionsbiologische Untersuchung von Sinkstoffen und Sedimenten der westlichen und mittleren Ostsee, Kieler Meeresforsch., 21: 55.Google Scholar
  94. Zeitzschel, B., Diekmann, P., and Uhlmann, L., 1978, A new multisample sediment trap, Mar. Biol., 45: 285.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Victor Smetacek
    • 1
  1. 1.Institut für MeereskundeKiel 1Fed. Rep. of Germany

Personalised recommendations