The Quantitative Significance of Gelatinous Zooplankton as Pelagic Consumers

  • Alice L. Alldredge
Part of the NATO Conference Series book series (NATOCS, volume 13)


Gelatinous Zooplankton, including the planktonic coelenterates, ctenophores, molluscs and tunicates are ubiquitous and often abundant members of both neritic and oceanic communities. The quantitative impact of these primary and secondary consumers on their food stocks has been estimated in previous studies by calculating the proportion of the prey standing stock consumed per day. In general, gelatinous Zooplankton usually consume less than 10% of their food populations per day although consumption is occasionally greater than 50%. Thus, gelatinous consumers may periodically decimate their food populations. Our understanding of the quantitative significance of gelatinous Zooplankton is constrained by the relatively few studies which integrate consumption rates with information on the growth rates and population dynamics of either the Zooplankton or their prey. These few studies suggest that gelatinous consumers have the greatest affect on food populations which are already limited by other environmental requirements. Attributes shared by many gelatinous consumers including high ingestion rates at high food abundances, and the potential for high growth rates, high fecundity and short generation time enable many gelatinous consumers to reach high population densities rapidly when food resources increase or when rich patches of food are encountered. Moreover, these attributes may enable some gelatinous Zooplankton to overwhelm other, more slowly growing planktonic consumers when food densities are high. Preliminary data on excretion and on the production and sinking rates of fecal material suggest that gelatinous consumers may also contribute significantly to particulate flux and nutrient recycling. Almost all of our knowledge of the quantitative significance of gelatinous Zooplankton is based on studies of neritic forms.


Fecal Pellet Prey Population Standing Stock Food Stock Quantitative Significance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge, A, L., 1981, The impact of appendicularian grazing on natural food concentrations in situ, Limnol.Oceanogr., 26:247.CrossRefGoogle Scholar
  2. Alldredge, A. L., and Madin, L. P., 1982, Pelagic tunicates: Unique herbivores in the marine plankton, Bioscience, 32:655.CrossRefGoogle Scholar
  3. Anderson, E. A., 1974, Trophic interactions among ctenophores and copepods in St. Margaret’s Bay, Nova Scotia, Ph.D Dissertation, Dalhousie University.Google Scholar
  4. Baker, L. D., and Reeve, M. R., 1974, Laboratory culture of the lobate ctenophore Mnemiopsis mccradyi with notes on feeding and fecundity, Mar.Biol., 26:57.CrossRefGoogle Scholar
  5. Barham, E. G., 1963, Siphonophores and the deep scattering layer, Science, 140:826.CrossRefGoogle Scholar
  6. Berner, A., 1962, Feeding and respiration in the copepod Temora longicornis (Müller), J.Mar.Biol.Ass.U.K., 42:625.CrossRefGoogle Scholar
  7. Berner, L., 1967, Distributional atlas of Thaliacea in the California Current region, CalCOIF Atlas, 8:1.Google Scholar
  8. Biggs, D. C., 1976, Nutritional ecology of Agalma okeni, in: “Coelenterate Ecology and Behavior,” G. O. Mackie, ed., Plenum Press, New York.Google Scholar
  9. Biggs, D. C., 1977, Respriation and ammonium excretion by open ocean gelatinous Zooplankton, Limnol.Oceanogr., 22:108.CrossRefGoogle Scholar
  10. Biggs, D. C., Bidigare, R. R., and Smith, D. E., 1981, Population density of gelatinous macrozooplankton: In situ estimation in oceanic surface waters, Biol.Oceanogr., 1:157.Google Scholar
  11. Bishop, J. K. B., Edmond, J. M., Ketten, D. R., Bacon, M. P., and Silker, W. B., 1977, The chemistry, biology and vertical flux of particulate matter from the upper 400m of the equatorial Atlantic Ocean, Deep Sea Res., 24:511.CrossRefGoogle Scholar
  12. Bishop, J. W., 1967, Feeding rates of the ctenophore, Mnemiopsis leidyi, Chesapeake Sci., 8:259.CrossRefGoogle Scholar
  13. Bruland, K. W., and Silver, M. W., 1981, Sinking rates of fecal pellets from gelatinous Zooplankton (salps, pteropods, doliolids), Mar.Biol., 63:295.CrossRefGoogle Scholar
  14. Clifford, H. C., and Cargo, D. G., 1978, Feeding rates of the sea nettle, Chrysaora quinquecirrha, under laboratory conditions, Estuaries, 1:58.CrossRefGoogle Scholar
  15. Confer, J. L., and Blades, P. I., 1975, Omnivorous Zooplankton and planktivorous fish, Limnol.Oceanogr., 20:571.CrossRefGoogle Scholar
  16. Conover, R. J., 1968, Zooplankton — life in a nutritiionally dilute environment, Am.Zool., 8:107.Google Scholar
  17. Conover, R. J., and Lalli, C. M., 1974, Feeding and growth in Clione limacina (Phillips), a pteropod mollusc. II. Assimilation, metabolism, and growth efficiency, J.Exp.Mar.Biol.Ecol., 16:131.CrossRefGoogle Scholar
  18. Corner, E. D. S., 1961, On the nutrition and metabolism of Zooplankton. I. Prelininary observations on the feeding of the marine copepod, Calanus helgolandicus, J.Mar.Biol.Ass.U.K., 41:5.CrossRefGoogle Scholar
  19. Cosper, T. C., and Reeve, M. R., 1975, Digestive efficiency of the chaetognath Sagitta hispida Conant, J.Exp.Mar.Biol.Ecol., 17:33.CrossRefGoogle Scholar
  20. Curl, H., 1962, Standing crops of carbon, nitrogen and phosphorus, and transfer between trophic levels in continental shelf waters south of New York, Rapp.Proc.Verb.Cons,Int.Explor.Mer., 153:183.Google Scholar
  21. Dagg, M. T., Cowles, T., Whitledge, T., Smith, S., Howe, S., and Judkins, D., 1980, Grazing and excretion by Zooplankton in the Peru upwelling system during April 1977, Deep Sea Res., 27:43.CrossRefGoogle Scholar
  22. Deibel, D. R., 1980, Feeding, growth and swarm dynamics of neritic tunicates from the Georgia Bight, Ph.D. Dissertation, University of Georgia.Google Scholar
  23. Deibel, D. R., 1982, Laboratory determined mortality, fecundity and growth rates of Thalia democratica Forskal and Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea), J.Plank.Res., 4:143.CrossRefGoogle Scholar
  24. Eppley, R. W., Renger, W. H., Venrick, E. L., and Mullin, M. M., 1973, A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean, Limnol.Oceanogr., 18:534.CrossRefGoogle Scholar
  25. Fenaux, R., 1976, Cycle vital, croissance et production chez Fritillaria pellucida (Appendicularia), dans la baie de Villefranche-sur-Mer, France, Mar.Biol., 34:229.CrossRefGoogle Scholar
  26. Fraser, J. H., 1962, The role of ctenophores and salps in Zooplankton production and standing crop, Rapp. et Proc.-Verb.Cons.Int.Explor.Mer., 153:121.Google Scholar
  27. Fraser, J. H., 1969, Experimental feeding of some medusae and chaetognaths, J.Fish.Res.Bd.Can., 26:1743.CrossRefGoogle Scholar
  28. Fraser, J. H., 1970, The ecology of the ctenophore Pleurobrachia pileus in Scottish waters, J. du Conseil, 33:149.CrossRefGoogle Scholar
  29. Greve, W., 1968. The “planktonkreisel”, a new device for culturing Zooplankton, Mar.Biol., 1:201.CrossRefGoogle Scholar
  30. Greve, W., 1970, Cultivation experiments on North Sea ctenophores, Helgo.wiss.Meeresunter., 20:304.CrossRefGoogle Scholar
  31. Greve, W., 1972, Okologische Untersuchungen an Pleurobrachia pileus 2. Laboratoriumuntersuchungen, Helgo.wiss,Meeresunter., 23:141.CrossRefGoogle Scholar
  32. Greze, V. N., and Bileva, O. K., 1980, Zooplankton and its structure in the pelagic zone of the Caribbean Sea, Soviet J.Mar.Biol., 5:79.Google Scholar
  33. Hamner, W. M., and Jenssen, R. M., 1974, Growth, degrowth, and irreversible cell differentiation in Aurelia aurita, Amer. Zool., 14:833.Google Scholar
  34. Hamner, W. H., Madin, L. P., Alldredge, A. L., Gilmer, R. W., and Hamner, P. P., 1975, Underwater observations of gelatinous Zooplankton: Sampling problems, feeding biollogy, and behavior, Limnol.Oceanogr., 20:907.CrossRefGoogle Scholar
  35. Harbison, G. R., and Gilmer, R. W., 1976, The feeding rates of the pelagic tunicate Pegea confederata and two other salps, Limnol.Oceanogr., 21:517.CrossRefGoogle Scholar
  36. Harbison, G. R., Madin, L. P., and Swanberg, N. R., 1978, On the natural history and distribution of oceanic ctenophores, Deep Sea Res., 25:233.CrossRefGoogle Scholar
  37. Harris, R. P., and Paffenhöfer, G. A., 1976, Feeding, growth and reproduction of the marine planktonic copepod Temora longicornis Müller, J.Mar,Biol.Ass.U.K., 56:675.CrossRefGoogle Scholar
  38. Harris, R. P., Reeve, M. R., Grice, G. D., Evans, G. T., Gibson, V. R., Beers, J. R., and Sullivan, B. K., 1982, Trophic interactions and production processes in natural Zooplankton communities in enclosed water columns, in: “Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems,” G. D. Grice and M. R. Reeve, eds., Springer-Verlag, New York.Google Scholar
  39. Heron, A. C., 1972, Population ecology of a colonizing species: The pelagic tunicate Thalia democratica I. Individual growth rates and generation time, Oecologia (Berl.), 10:269.CrossRefGoogle Scholar
  40. Hirota, J., 1974, Quantitative natural history of Pleurobrachia bachei in La Jolla Bight, United States National Marine Fisheries Service Fishery Bulletin, 72:295.Google Scholar
  41. Honjo, S., and Roman, M. R., 1978, Marine copepod fecal pellets: Production, preservation and sedimentation, J.Mar.Res., 36:45.Google Scholar
  42. Huntley, M. E., and Hobson, L. A., 1978, Medusae predation and plankton dynamics in a temperate fjord, British Columbia, J.Fish.Res.Bd.Can., 35:257.CrossRefGoogle Scholar
  43. Ikeda, T., 1974, Nutritional ecology of marine Zooplankton, Memoirs of the Fac.Fish., Hokkaido Univ., 22:1.Google Scholar
  44. Kamshilov, M. M., 1960, Feeding of the ctenophore Beroe cucumis Fabricius, Doklady Akademii Nauk Union of Soviet Socialist Republics, 130:1138.Google Scholar
  45. King, R. K., 1981, The quantitative natural history of Oikopleura dioica (Urochordata: Lavacea) in the laboratory and in enclosed water columns, Ph.D. Dissertation, University of Washington.Google Scholar
  46. King, R. K., Hollibaugh, J. T., and Azam, F., 1980, Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns, Mar.Biol., 56:49.CrossRefGoogle Scholar
  47. Kremer, P. M., 1975, Nitrogen regeneration by the ctenophore Mnemiopsis leidyi, in: “Mineral Cycling in Souteastern Ecosystems,” G. G. Howwell, J. B. Gentry and M. M. Smith, eds,, United States Energy Research and Development Administration Symposium Series, N.T.I.S. No. CONF-740513.Google Scholar
  48. Kremer, P. M., 1976a, Excretion and body composition of the ctenophore Mnemiopsis leidyi (A. Agassiz): Comparisons and consequences, in: “Proceedings of the 10th European Symposium on Marine Biology,” G. Persoone and E. Jaspers, eds., Vol. 2:351, Univera Press, Wetteren, Belgium.Google Scholar
  49. Kremer, P. M., 1976b, Population dynamics and ecological energetics of a pulsed Zooplankton predator, the ctenophore Mnemiopsis leidyi, in: “Estuarine Processes,” M. L. Wiley, ed., Academic Press, New York.Google Scholar
  50. Kremer, P. M., 1977, Respiration and excretion by the ctenophore Mnemiopsis leidyi, Mar.Biol., 44:43.CrossRefGoogle Scholar
  51. Kremer, P. M., 1979, Predation by the ctenophore Mnemiopsis leidyi in Narragansett Bay, Rhode Island, Estuaries, 2:97.CrossRefGoogle Scholar
  52. Kremer, P. M., Reeve, M. R., Walter, M. A., and Liedle, S. D., 1980, The effect of food availability on the carbon and nitrogen budgets of the ctenophore Mnemiopsis mccradyi, Abst. 3rd Winter ASLO Meeying, Seattle, Wa.Google Scholar
  53. Lasker, R., 1966, Feeding, growth, respiration, and carbon utilization of a Euphausiid crustacean, J.Fish.Res.Bd.Can., 23:1291.CrossRefGoogle Scholar
  54. Madin, L. P., 1974, Field observations on the feeding biology behavior of salps (Tunicata: Thaliacea), Mar.Biol., 25:143.CrossRefGoogle Scholar
  55. Madin, L. P., 1982, Production, composition and sedimentation of salp fecal pellets in oceanic waters, Mar.Biol., 67:39.CrossRefGoogle Scholar
  56. Madin, L. P., Cetta, C. M., and McAlister, V. L., 1981, Elemental and biochemical composition of salps (Tunicata: Thaliacea), Mar.Biol., 63:217.CrossRefGoogle Scholar
  57. Miller, R. J., 1970, Distribution and energetics of an estuarine population of the ctenophore, Mnemiopsis leidyi, Ph.D. Dissertation, North Carolina State University, Raleigh.Google Scholar
  58. Miller, R. J., 1974, Distribution and biomass of an estuarine ctenophore population, Mnemiopsis leidyi (A.Agassiz), Chesapeake Sci., 15:1.CrossRefGoogle Scholar
  59. Möller, H., 1980, Scyphomedusae as predators and food competitors of larval fish, Meeresforschung, 28:90.Google Scholar
  60. Mullin, M. M., and Brooks, E. R., 1970, Growth and metabolism of two planktonic marine copepods as influenced by temperature and type of food, in: “Marine Food Chains,” J. Steele, ed., Oliver and Boyd, Edinburgh.Google Scholar
  61. Mullin, M. M., and Evans, P. M., 1974, The use of a deep tank in plankton ecology, 2. Efficiency of a planktonic food chain, Limnol.Oceanogr., 19:902.CrossRefGoogle Scholar
  62. Omori, M., 1969, Weights and chemical composition of some important oceanic Zooplankton in the North Pacific Ocean, Mar.Biol., 3:4.CrossRefGoogle Scholar
  63. Oviatt, C. M., and Kremer, P. M., 1977, Predation on the ctenophore Mnemiopsis leidyi by butterflyfish, Peprilus tricanthus, in Narragansett Bay, Phode Island, Chesapeake Sci., 18:236.CrossRefGoogle Scholar
  64. Paffenhöfer, G. A., 1973, The cultivation of an appendicularian through numerous generations, Mar.Biol., 22:183.CrossRefGoogle Scholar
  65. Paffenhöfer, G. A., 1976a, On the biology of appendicularia of the southeastern North Sea, in: “Proceedings of the 10th European Symposium on Marine Biology,” G. Persoone and E. Jaspers, eds., Vol. 2:437, Universa Press, Wetteren, Belgium.Google Scholar
  66. Paffenhöfer, G. A., 1976b, Feeding, growth and food conversion of the marine planktonic copepod Calanus helgolandicus, Limnol.Oceanogr., 21:39.CrossRefGoogle Scholar
  67. Paffenhöfer, G. A., and Harris, R. P., 1979, Laboratory culture of marine holozooplankton and its contribution to studies of marine planktonic food webs, Adv.Mar.Biol., 16:211.CrossRefGoogle Scholar
  68. Parsons, T. R., and Takahashi, M., 1973, “Biological Oceanographie Processes,” Pergamon, Oxford.Google Scholar
  69. Phillips, P. J., Burke, W. D., and Keener, E. J., 1969, Observations on the trophic significance of jellyfish in Mississippi Sound with quantitative data on the associative behavior of small fishes with medusae, Trans.Amer.Fish.Soc., 98:703.CrossRefGoogle Scholar
  70. Purcell, J. E., 1981a, Feeding ecology of Rhizophysa eysenhardti, a siphonophore predator of fish larvae, Limnol.Oceanogr., 26:424.CrossRefGoogle Scholar
  71. Purcell, J. E., 1981b, Selective predation and caloric consumption by the siphonophore Rosacea cymbiformis in nature, Mar.Biol., 63:283.CrossRefGoogle Scholar
  72. Purcell, J. E., 1981c, Dietary composition and diel feeding patterns of epipelagic siphonophores, Mar.Biol., 65:83.CrossRefGoogle Scholar
  73. Purcell, J. E., 1982, Feeding and growth of the siphonophore Muggiaea atlantica, J.Plank.Res., In press.Google Scholar
  74. Reeve, M. R., 1970, The biology of Chaetognatha. I. Quantitative aspects of growth and egg production in Sagitta hispida, in: “Marine Food Chains,” J. H. Steele, ed., Oliver and Boyd, Edinburgh.Google Scholar
  75. Reeve, M. R., 1980, Population dynamics of ctenophores in large scale enclosures over several years, in: “Nutrition in the Lower Metazoa,” D. C. Smith and Y. Tiggon, eds., Pergamon Press, New York.Google Scholar
  76. Reeve, M. R., and Baker, L. D., 1975, Production of two planktonic carnivores (chaetognath and ctenophore) in south Florida inshore waters, United States National Marine Fisheries Service Fishery Bulletin, 72:238.Google Scholar
  77. Reeve, M. R., and Walter, M. A., 1976, A large scale experiment on the growth and predation potential of ctenophore populations, in: “Coelenterate Ecology and Behavior,” G. O. Mackie, ed., Plenum Press, New York.Google Scholar
  78. Reeve, M. R., and Walter, M. A., 1978, Nutritional ecology of ctenophores — A review of recent research, Adv.Mar.Biol., 15:249.CrossRefGoogle Scholar
  79. Reeve, M. R., Walter, M. A., and Ikeda, T., 1978, Laboratory studies of ingestion, and food utilization in lobate and tentaculate ctenophores, Limnol.Oceanogr., 23:740.CrossRefGoogle Scholar
  80. Rogers, C. A., Biggs, D. C., and Cooper, R. A., 1978, Aggregation of the siphonophore Nanomia cara in the Gulf of Maine: Observations from a submersible, United States National Marine Fisheries Service Fishery Bulletin, 76:281.Google Scholar
  81. Roosen-Runge, E. C., 1970, Life cycle of the hydromedusae Phialidium gregarium (A. Agassiz, 1862) in the laboratory, Biol.Bull., 139:203.CrossRefGoogle Scholar
  82. Seki, H., 1973, Red tide of Oikopleura in Saanich Inlet, La Mer (Bull.Soc.Francojap.Oceanogr.), 11:153.Google Scholar
  83. Silver, M. W., and Bruland, K. W., 1981, Differential feeding and fecal pellet compostion of salps and pteropods, and the possible origin of the deep water flora and olive green “cells”, Mar,Biol., 62:263.CrossRefGoogle Scholar
  84. Stanlaw, K. A., Reeve, M. R., and Walter, M. A., 1981, Growth, food and vulnerability to damage of the ctenophore Mnemiopsis mccradyi in its early life history stages, Limnol.Oceanogr., 26:224.CrossRefGoogle Scholar
  85. Stretch, J. J., 1982, Observations on the abundance and feeding behavior of the cestid ctenophore, Velamen paralleling, Bull.Mar.Sci., In press.Google Scholar
  86. Stretch, J. J., and King, J. M., 1980, Direct fission: An undescribed reproductive method in the Hydromedusae, Bull.Mar.Sci. 30:522.Google Scholar
  87. Urrere, M. A., and Knauer, G. A., 1981, Zooplankton fecal pellet production and vertical transport of particulate organic material in the pelagic environment, J.Plank.Res., 3:369.CrossRefGoogle Scholar
  88. Welch, H. E., 1968, Relationships between assimilation efficiencies and growth efficiencies for aquatic consumers, Ecology, 49:755.CrossRefGoogle Scholar
  89. Wiebe, P. H., Madin, L. P., Haury, L. R., Harbison, G. R., and Philbin, L. M., 1979, Diel vertical migration by Salpa aspera and its potential for large scale particulate organic matter transport to the deep sea, Mar.Biol., 53:249.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Alice L. Alldredge
    • 1
  1. 1.Oceanic Biology Group, Department of Biological Sciences and Marine Science InstituteUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations