Advertisement

An Overview of Secondary Production in Pelagic Ecosystems

  • R. Williams
Part of the NATO Conference Series book series (NATOCS, volume 13)

Abstract

For the purpose of this general view of secondary production in the pelagic environment I shall consider that secondary production is almost synonymous with Zooplankton production with fish referred to as tertiary producers. Although I shall deal principally with zooplankton, to accurately quantify the level and rate of secondary production in a pelagic ecosystem requires a complete understanding of the functioning of all trophic levels and the interaction of the processes within the ecosystem. I repeat the sentiment expressed by Mann (1969) that the average ecosystem is so complex that ecologists have tended to concentrate their attention on the processes involving single species or isolated food chains. Over a decade later this is still true but positive steps have been taken towards gaining insights to the structure and functioning of ecosystems using the holistic approach of modelling biological systems (Nihoul, 1975; Platt et al., 1981). The cycle of production of material in the sea is usually described in simple terms starting with the incorporation of solar energy into autotrophic production in the euphotic zone. The amount of primary production is restrained by the availability of nutrients and grazing activities of the herbivores/omnivores.

Keywords

Trophic Level Marine Ecosystem Plankton Community Secondary Production Grazing Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, K. R., 1951, The Horokiwi Stream, Bull.Mar.Pep. N.Z. Fish No.10.Google Scholar
  2. Alldredge, A. L., The quantitative significance of gelatinous zooplankton as planktonic predators, This volume.Google Scholar
  3. Banse, K., and Mosher, S., 1980, Adult body mass and annual production/biomass relationships of field populations, Ecol. Monogr., 50:355.CrossRefGoogle Scholar
  4. Barber, R. T.- and Smith, R. L., 1971, Coastal upwelling ecosystems, in; “Analysis of Marine Ecosystems,” A. R. Longhurst, ed., Academic Press, London.Google Scholar
  5. Beers, J. R., and Stewart, G. L., 1971, Micro-zooplankton in the plankton communities of the upper waters of the eastern tropical Pacific, Deep-Sea Res., 18:861.Google Scholar
  6. Benke, A. C., 1979, A modification of the Hynes method for estimating secondary production with particular significance for multi-voltine populations, Limnol.Oceanogr., 24:168.CrossRefGoogle Scholar
  7. Binet, D., 1979, Estimation de la production zooplanktonique sur le plateau continental ivorien, D.Sci.Centre Rech.Oceanogr.Abidjan, 10:81.Google Scholar
  8. Blackburn, M., 1981, Low latitude Gyral regions, in: “Analysis of Marine Ecosystems,” A. R. Longhurst, ed., Academic Press, London.Google Scholar
  9. Bougis, P., 1974, Ecologie du plancton marin. II. Le zooplancton, Collect.Ecol., 3, Masson.Google Scholar
  10. Boyd, C. M., 1973, Small scale spatial patterns of marine Zooplankton examined by an electronic in situ Zooplankton detecting device, Neth.J.Sea Res., 7:103.CrossRefGoogle Scholar
  11. Boyd, C. M., 1976, Selection of particle sizes by filter-feeding copepods: a plea for reason, Limnol.Oceanogr., 21:175.CrossRefGoogle Scholar
  12. Boyd, C., 1981, Microcosms and experimental planktonic food chains, in: “Analysis of Marine Ecosystems,” A. R. Longhurst, ed., Academic Press, London.Google Scholar
  13. Boyd, C. M., and Johnson, G. W., 1969, Studying Zooplankton populations with an electronic counting device and the LINC- 8 computer, Trans. Applications of Sea Going Computers Symposium, Mar.Tech.Soc., 83.Google Scholar
  14. Boysen-Jensen, P., 1919, Valuation of the Limfjord 1, Rep.Dan.Biol.Stn., 26:1.Google Scholar
  15. Burkill, P. H., 1982, Ciliates and other microplankton components of a nearshore food-web; standing stocks and production processes, in: “Marine Planktonic Protozoa and Microplankton Ecology,” P. Bougis, ed., Annales Inst.Oceanog.Google Scholar
  16. Caswell, H., 1972, On instantaneous and finite birth rates, Limnol.Oceanogr., 17:787.CrossRefGoogle Scholar
  17. Clapham, A. R., Lucas, C. E., and Pirie, N. W., 1976, A review of the United Kingdom contribution to the International Biological Programme, Phil.Trans.Roy.Soc.Lond., B 274, No. 934:275.Google Scholar
  18. Colebrook, J. M., 1979, Continuous plankton records: seasonal cycles of phytoplankton and copepods in the North Atlantic Ocean and North Sea, Mar.Biol., 51:23–32.CrossRefGoogle Scholar
  19. Conover, R. J., 1966, Assimilation of organic matter by Zooplankton, Limnol.Oceanogr., 11:338.CrossRefGoogle Scholar
  20. Conover, R. J., 1979, Secondary production as an ecological phenomenon, in: “Zoogeography and Diversity in Plankton,” S. van der Spoel and A. C. Pierrot-Bults, eds., Edward Arnold, London.Google Scholar
  21. Conover, R. J., and Lalli, C. M., 1972, Feeding and growth in Clione limacina (Phipps), a pteropod mollusc, J.Exp.Mar.Biol.Ecol., 9:279.CrossRefGoogle Scholar
  22. Conover, R. J,, and Francis, V., 1973, The use of radioactive isotopes to measure the transfer of materials in aquatic food chains, Mar.Biol., 8:272.Google Scholar
  23. Conover, R. J., and Lalli, C. M., 1974, Feeding and growth in Clione limacina (Phipps), a pteropod mollusc. II. Assimilation, metabolism and growth efficiency, J.Exp.Mar.Biol.Ecol., 16:131.CrossRefGoogle Scholar
  24. Conover, R. J., and Huntley, M. E., 1980, General rules of grazing in pelagic ecosystems, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Environ.Sci.Res., 19, Plenum Press, New York.Google Scholar
  25. Cooke, R. A., Terhune, L. D. B., Ford, J. S., and Bell, W. H., 1970, An opto-electronic plankton sizer, Fish.Res.Bd.Can.Tech.Rep., 170:1.Google Scholar
  26. Corner, E. D. S., 1961, On the nutrition and metabolism of Zooplankton. 1. Preliminary observations on the feeding of the marine copepod Calanus helgolandicus (Claus), J.Mar.Biol.Ass.U.K., 41:5.CrossRefGoogle Scholar
  27. Corner, E. D. S., Cowey, C. B., and Marshall, S. M., 1967, On the nutrition and metabolism of Zooplankton. V. Feeding efficiency of Calanus finmarchicus, J.Mar.Biol.Ass.U.K., 47:259.CrossRefGoogle Scholar
  28. Corner, E. D. S., and Davies, A. G., 1971, Plankton as a factor in the nitrogen and phosphorus cycles in the sea, Adv.Mar.Biol., 9:101.CrossRefGoogle Scholar
  29. Crisp, D. J., 1975, Secondary productivity in the sea, in: “Productivity of world Ecosystems,” Nat.Acad.Sci., Washington, D.C.Google Scholar
  30. Curl, H. Jr., 1962, Standing crops of carbon, nitrogen and phosphorus and transfer between trophic levels in continental shelf waters south of New York, Rapp.P.v.Réun.Cons.Perm.Int.Explor.Mer., 153:183.Google Scholar
  31. Cushing, D. H., 1959, On the nature of production in the sea, Fishery Invest.(Lond.), Ser. II, 22:1.Google Scholar
  32. Cushing, D. H., 1966, Biological and hydrographie changes in British seas during the last thirty years, Biol.Rev., 41:211.CrossRefGoogle Scholar
  33. Cushing, D. H., 1970, Pelagic food chains, in: “Marine Food Chains,” J. H. Steele, ed., Oliver and Boyd, Edinburgh.Google Scholar
  34. Dagg, M. J., 1976, Complete carbon and nitrogen budgets for the carnivorous amphipod, Calliopius laeviusculus (Krøyer), Int.Revue Ges.Hydrobiol., 61:297.CrossRefGoogle Scholar
  35. Denman, K., and Platt, T., 1976, The variance spectrum of phytoplankton in a turbulent ocean, J.Mar.Res., 34:593.Google Scholar
  36. Denman, K. L., and Mackas, D. L., 1978, Collection and analysis of underway data and related physical measurements, in: “Spatial Pattern in Plankton Communities,” J. H. Steele, ed., Plenum Press, New York.Google Scholar
  37. Dickie, L. M., 1972, Food chains and fish production in the Northwest Atlantic, International Commission for the Northwest Atlantic Fisheries, Spec. Publ., 8:202.Google Scholar
  38. Dobben, van, W. H., and Lowe-McConnell, R. H., eds., 1975, “Unifying Concepts in Ecology,” Dr. W. Junk, B. V. Publishers, The Hague.Google Scholar
  39. Donaghay, P. L., 1980, Grazing interactions in the marine environment, in: “Evolution and Ecology of Zooplankton Communities,” W. C. Kerfoot, ed., University Press, New England.Google Scholar
  40. Donaghay, P. L., and Small, L. F., 1979, Food selection capabilities of the estuarine copepod Acartia clausi, Mar.Biol., 52:137.CrossRefGoogle Scholar
  41. Dussart, B. M., 1965, Les différentes catégories de plancton, Hydrobiologia, 26:72.CrossRefGoogle Scholar
  42. Edmondson, W. T., 1960, Reproductive rates of rotifers in natural populations, Mem.Ist.Ital.Idrobiol., 12:21.Google Scholar
  43. Edmondson, W. T., 1974, Secondary production, Mill.Internat.Verin.Limnol., 20:229.Google Scholar
  44. Edmondson, W. T., 1977, Population dynamics and secondary production, Arch.Hydrobiol.Beih.Ergebn.Limnol., 8:56.Google Scholar
  45. Edmondson, W. Y. 1979, Problems of Zooplankton dynamics, in: “Biological and Mathematical Aspects in Population dynamics,” R. de Bernadi, ed., Mem.Ist.Ital.Idrobiol., Suppl. 37.Google Scholar
  46. Edmondson, E. T., and Winberg, G. G., 1971, “A manual on methods for the assessment of secondary production in fresh waters,” (IBP Handbk. 17), Blackwell, Oxford.Google Scholar
  47. Edwards, C., and Harris, E. J., 1955, Do tracers measure fluxes?, Nature, Lond., 175:262.Google Scholar
  48. El-Sayed, S. Z., 1978, Primary productivity and estimates of potential yields of the southern ocean, in: “Polar Research,” M. A. McWhinnie, Ed., AAAS Selected Symposium 7, Westview Press, Boulder.Google Scholar
  49. Everson, I., 1977, “The Living Resources of the Southern Ocean. Southern Ocean Fisheries Programme,” GLO/SO/77/1, FAO, Rome,Google Scholar
  50. Fasham, M. J. R., 1978, The application of some stochastic processes to the study of plankton patchiness, in: “Spatial Pattern in Plankton Communities,” J. H. Steele, ed., Plenum Press, New York and London.Google Scholar
  51. Fenchel, T., 1983, Suspended marine bacteria as a food source, this volume.Google Scholar
  52. Fisher, S. G., and Likens, G. E., 1973, Energy flow in Bear Brook New Hampshire: An integrative approach to stream ecosystem metabolism, Ecol.Mongr., 43:421.CrossRefGoogle Scholar
  53. Fuhrman, J. A., and Azam, F., 1982, Thymidine uptake and bacterioplankton production, Mar.Biol., 66:109.CrossRefGoogle Scholar
  54. Gamble, J. C., 1978, Copepod grazing during a declining spring phytoplankton bloom in the northern North Sea, Mar.Biol., 49:303.CrossRefGoogle Scholar
  55. Gieskes, W. W. C., and van Bennekom, A. J., 1973, Unreliability of the 14C method for estimating primary productivity in eutrophic Dutch coastal waters, Limnol.Oceanogr., 18:494.CrossRefGoogle Scholar
  56. Gieskes, W. W. C., and Kraay, G. W., 1977, Primary production and consumption of organic matter in the southern North Sea during the spring bloom of 1975, Neth.J.Sea Res., 11:146.CrossRefGoogle Scholar
  57. Gieskes, W. W. C., Kray, G. W., and Baars, M. A., 1979, Current 14C methods for measuring primary production; gross underestimates in oceanic waters, J.Sea Res., 13:58.CrossRefGoogle Scholar
  58. Gilmer, R. W., 1974, Some aspects of feeding in the cosomatous pteropod molluscs, J.Exp.Mar.Biol.Ecol., 15:127.CrossRefGoogle Scholar
  59. Glover, R. S., Robinson, G. A., and Colebrook, J. M., 1972, Marine biological surveillance, Environment and Change, 2:395.Google Scholar
  60. Greve, W., and Parsons, T. R., 1977, Photosynthesis and fish production; Hypothetical effects of climatic change and pollution, Helgol.Wiss, Meeresunters., 30:666.CrossRefGoogle Scholar
  61. Greze, B. S., and Baldina, E. P., 1964, Population dynamics and annual production of Acartia clausi Giesbr. and Centropages kroyeri Giesbr. in the neritic zone of the Black Sea, Fish, Res.Bd.Can. Trans. Ser. 893.Google Scholar
  62. Greze, V. N., 1978, Production in animal populations, in: “Marine Ecology,” O. Kinne, ed., Vol. 4, Wiley-InterScience.Google Scholar
  63. Grice, G. D., Harris, R. P., Reeve, M. R., Heinbokel, J. F., and Davis, C. O., 1980, Large scale enclosed water column ecosystems. An overview of Food-web I, the final CEPEX experiment, J.Mar.Biol.Assoc.U.K., 60:401.CrossRefGoogle Scholar
  64. Griffiths, F. B., and Caperon, J., 1979, Description and use of an improved method for determining estuarine grazing rates on phytoplakton, Mar.Biol., 54:301.CrossRefGoogle Scholar
  65. Gulland, J. A., 1970, Food chain studies and some problems in world fisheries, in: “Marine Food Chains,” J. H. Steele, ed., Oliver and Boyd, Edinburgh.Google Scholar
  66. Haas, L. W., and Webb, K. L., 1979, Nutritional mode of several non-pigmented microflagellates from the York River Estuary, Virginia, J.Exp.Mar.Biol.Ecol., 39:125.CrossRefGoogle Scholar
  67. Haffner, G. D., and Evans, J. H., 1974, Determination of seston-size particle distribution with Coulter counter, models A and B, and the two tube technique, Br.Phycol.J., 9:255.CrossRefGoogle Scholar
  68. Hamilton, A. L., 1969, On estimating annual production, Limnol.Oceanogr., 41:771.CrossRefGoogle Scholar
  69. Haney, J. F., 1971, An in situ method for the measurement of zooplankton grazing rates, Limnol.Oceanogr., 16:970.CrossRefGoogle Scholar
  70. Harbison, G. R., and McAlister, V. L., 1980, Fact and artifact in copepod feeding experiments, Limnol.Oceanogr., 25:971.CrossRefGoogle Scholar
  71. Hardy, A. C., 1924, The herring in relation to its animate environment. Part 1. The food and feeding of the herring with special reference to the east coast of England, Fishery Invest., Ser II, 7(3):1.Google Scholar
  72. Harris, R. P., 1973, Feeding, growth, reproduction and nitrogen utilization by the harpacticoid copepod Tigriopus brevicornis, J.Mar.Biol.Ass.U.K., 53:785.CrossRefGoogle Scholar
  73. Harris, R. P., Reeve, M. R., Grice, G. D., Evans, G. T., Gibson, V. R., Beers, J. R., and Sullivan, B. K., 1982, Trophic interactions and production processes in natural Zooplankton communities in enclosed water columns, in: “Marine Mesocosms,” G. D. Grice and M. R. Reeve, eds., Springer-Verlag, New York.Google Scholar
  74. Haury, L. R., McGowan, J. A., and Wiebe, P. H., 1978, Patterns and processes in the time-space scales of plankton distributions, in: “Spatial Pattern in Plankton Communities,” J. H. Steele, ed., Plenum Press, New York.Google Scholar
  75. Heinle, D. R., 1966, Production of a calanoid copepod Acartia tonsa in the Patuxent River estuary, Chesapeake Sci., 7:59.CrossRefGoogle Scholar
  76. Heninrich, A. K., 1962, The life histories of plankton animals and seasonal cycles of plankton communities in the oceans, J.Cons.Int.Explor.Mer., 27:15.Google Scholar
  77. Hollibaugh, J. R., Fuhrman, J. A., and Azam, F., 1980, Radioactively labeling of natural assemblages of bacterioplankton for use in trophic studies, Limnol.Oceanogr., 25:172.CrossRefGoogle Scholar
  78. Horwood, J. W., 1978, Observations on spatial heterogeneity of surface chlorophyll in one and two dimensions, J.Mar.Biol.Ass.U.K., 58:487.CrossRefGoogle Scholar
  79. Hynes, H. B., 1961, The invertebrate fauna of a Welsh mountain stream, Arch.Hydrobio1., 57:344.Google Scholar
  80. Hynes, H. B., and Coleman, M. J., 1968, A simple method of assessing the annual production of stream benthos, Limnol.Oceanogr., 13:569.CrossRefGoogle Scholar
  81. Ivlev, V. S., 1945, The biological productivity of waters, Usp.Sovrem.Biol., 19:98Google Scholar
  82. Ivlev, V. S., 1945, The biological productivity of waters (J.Fish.Res.Bd.Can., 23:1727, 1966).CrossRefGoogle Scholar
  83. Johansen, P. L., 1976, A study of tintinnids and othe Protozoa in eastern Canadian waters with special reference to tintinnid feeding, nitrogen excretion and reproductive rates, PhD. Thesis, Univ. of Dalhousie.Google Scholar
  84. Jørgensen, C. B., 1966, “Biology of Suspension Feeding,” Pergamon Press, London.Google Scholar
  85. Juday, C., 1940, The annual energy budget of an inland lake, Ecology, 21:438.CrossRefGoogle Scholar
  86. Kachel, V., 1976, Basic principles of electrical sizing of cells and particles and their realisation in the new instrument “Metricell”, J.Histochem.Cytochem., 24:211.CrossRefGoogle Scholar
  87. Karuhn, R., Davies, R., Kaye, B. H., and Clinch, M. J., 1975, Studies on the Coulter counter. Part 1. Investigation into the effect of orifice geometry and flow direction on the measurement of particle volume, Powder Technol., 11:157.CrossRefGoogle Scholar
  88. Keen, R., and Nassar, R., 1981, Confidence intervals for birth and death rates estimated with the egg-ratio technique for natural populations of Zooplankton, Limnol.Oceanogr., 26:131.CrossRefGoogle Scholar
  89. Ketchum, B. H., 1962, Regeneration of nutrients by Zooplankton, Rapp.p-v.Réun.Cons.Int.Explor Mer, 153:142.Google Scholar
  90. King, D. R., Hollibaugh, J. T., and Azurn, F., 1980, Predator-prey interaction between larvacean Oikopleura dioica and bacterioplankton in enclosed water columns, Mar.Biol., 56:49.CrossRefGoogle Scholar
  91. Krueger, C. C., and Martin, F. B., 1980, Computation of confidence intervals for the size-frequency (Hynes) method of estimating secondary production, Limnol.Oceanogr., 25:773.CrossRefGoogle Scholar
  92. Landry, M. R., and Hassett, R. P., 1982, Estimating the grazing impact of marine micro-zooplankton, Mar.Biol., 67:283.CrossRefGoogle Scholar
  93. Lasker, R., 1966, Feeding growth, respiration and carbon utilization of a euphausid crustacean, J.Fish Res.Bd.Can., 23:1291.CrossRefGoogle Scholar
  94. LeBlond, P. H. and Parsons, T. R., 1978, Reply to comment by W. E. Ricker, Limnol.Oceanogr., 28:380.Google Scholar
  95. Le Borgne, R. P., 1978, Evolution de la production secondaire planctonique en milieu océanique par le méthode des rapports C/N/P, Oceanol.Acta., 1:107.Google Scholar
  96. Le Borgne, R. P., 1981a, Les facteurs de variation de la respiration et de l’excrétion d’azote et de phosphore du zooplancton de l’Atlantique intertropical oriental, 1. Les conditions expérimentales et la temperature, Océanogr.Tropicale, In press.Google Scholar
  97. Le Borgne, R. P., 1981b, Les facteurs de variation de la respiration et de l’excrétion d’azote et de phosphore du zooplancton de l’Atlantique intertripical oriental. 11. Nature des populations zooplanktonique et facteurs du milieu, Oceanogr. Tropicale, In press.Google Scholar
  98. Le Borgne, R. P., 1982, Zooplankton production in the eastern tropical Atlantic Ocean: net growth efficiency and P:B in terms of carbon, nitrogen and phosphorus, Limnol.Oceanogr., 27:681.CrossRefGoogle Scholar
  99. Lindeman, R. L., 1942, The tropho-dynamic aspect of ecology, Ecology, 23:399.CrossRefGoogle Scholar
  100. Longhurst, A. R., 1981, Significance of spatial variability, in: “Analysis of Marine Ecosystems,” A. R. Longhurst, ed., Academic Press, London.Google Scholar
  101. Macfadyen, A., 1964, Energy flow in ecosystems and its exploitations by grazing, in: “Grazing in Terrestrial and Marine Environments,” D. Crisp, ed., Blackwell Scientific, Oxford.Google Scholar
  102. Mackas, D., 1976, Horizontal spatial hererogeneity of Zooplankton on the Fladen Ground, I.C.E.S., C.M. 1976/L:20, Plankton Committee.Google Scholar
  103. Mackinnon, D. L., and Hawes, R. S. J., 1961, “An Introduction to the Study of Protozoa,” Clarendon Press, Oxford.Google Scholar
  104. McAllister, C. D., 1970, Zooplankton rations, phytoplankton mortality and the estimation of marine production, in: “Marine Food Chains,” J. H. Steele, ed., Oliver and Boyd, Edinburgh.Google Scholar
  105. Malovitskaya, L. M., 1971, The production of the numerous species of copepods of the Gulf of Guinea, Trudy Atlant- NIRO, 37:401.Google Scholar
  106. Mann, K. H., 1964, The pattern of energy flow in the fish and invertebrate fauna of the River Thames, Verh.Int.Ver.Limno1., 15: 485.Google Scholar
  107. Mann, K. H., 1969, Dynamics of aquatic ecosytems, in: “Advances in Ecological Research,” J. B. Cragg, ed., Academic Press, New York.Google Scholar
  108. Margalef, R., 1978, What is an upwelling ecosystem?, in: “Upwelling Ecosystems,” R. Boje and T. Tomczak, eds., Springer-Verlag, New York.Google Scholar
  109. Marshall, S. M., and Orr, A. P., 1955, On the biology of Calanus finmarchicus VIII. Food uptake, assimilation, and excretion in adult and stage V Calanus, J.Mar.Biol.Ass.U.K., 34:495.Google Scholar
  110. May, R. M., 1979, The structure and dynamics of ecological communities, in: “Population Dynamics,” R. M. Anderson, B. T. Turner and L. R. Taylor, eds., Blackwell Scientific, Oxford.Google Scholar
  111. Menzie, C. A., 1980, A note on the Hynes method of estimating secondary production, Limnol.Oceanogr., 25:770.CrossRefGoogle Scholar
  112. Mullin, M. M., 1969, Production of Zooplankton in the ocean: The present status and problems, Oceanogr.Mar.Biol.Ann.Rev., 7:293.Google Scholar
  113. Nemoto, T., and Harrison, G., 1981, High latitude ecosystems, in: “Analysis of Marine Ecosystems,” A. R. Longhurst, ed., Academic Press, London.Google Scholar
  114. Nihoul, J. C. T., ed., 1975, “Modelling of marine systems,” (Elsevier Oceanogr. Ser. 10.), Elsevier Scientific, Amsterdam.Google Scholar
  115. Odum, H. T., 1957, Trophic structure and productivity of Silver Springs, Florida, Ecol.Monogr., 27:55.CrossRefGoogle Scholar
  116. Paloheimo, J. E., 1974, Calculation of instantaneous birth rate, Limnol.Oceanogr., 19:692.CrossRefGoogle Scholar
  117. Paloheimo, J. E., Crabtree, S. J., and Taylor, W. D., 1982, Growth model of Daphnia, Can.J.Fish.Aquat.Sci., 39:598.CrossRefGoogle Scholar
  118. Parslow, J., Sonntag, N. C., and Matthews, J. B. L., 1979, Technique of systems identification applied to estimating copepod population parameters, J.Plank.Res., 1:137.CrossRefGoogle Scholar
  119. Parsons, T. R., 1969, The use of particle size spectra in determining the structure of a plankton community, J.Oceanogr.Soc.Jpn., 25:172.Google Scholar
  120. Parsons, T. R., LeBrasseur, R. J., and Fulton, J. D., 1967, Some observations on the dependence of Zooplankton grazing on cell size and concentrations of phytoplankton blooms, J.Oceanogr.Soc.Jpn., 23:10.Google Scholar
  121. Parsons, T. R., Le Brasseur, R. J., Fulton, J. D., and Kennedy, O, D., 1969, Production studies in the Strait of Georgia. Part II. Secondary production under the River Fraser plume, February-May 1967, J.Exp.Mar.Biol.Ecol., 3:39.CrossRefGoogle Scholar
  122. Parsons, T. R., and Le Brasseur, R. J., 1970, The availability of food to different trophic levels in the marine food chain, in: “Marine Food Chains,” J. H. Steele, ed., Oliver and Boyd, Edinburgh.Google Scholar
  123. Parsons, T. R., Takahashi, M., and Hargrave, B., 1977, “Biological Oceanographic Processes,” Pergamon Press, Oxford.Google Scholar
  124. Peterson, B. J., 1980, Aquatic primary productivity problem, Ann.Rev.Ecol.Syst., 11:359.CrossRefGoogle Scholar
  125. Petipa, T. S., 1967, in: “Structure and Dynamics of Aquatic Communities and Populations,” Akad.Nauk.SSSR.Inst.Biol. Southern Seas, Kiev (English trans).Google Scholar
  126. Petipa, T. S., Pavlova, E. V., and Mironov, G. N., 1970, The food web structure, utilization and transport of energy by trophic levels in the plankton communities, in: “Marine Food Chains,” J. H. Steele, eds., Oliver and Boyd, Edinburgh.Google Scholar
  127. Phillipson, J., 1964, A miniature bomb calorimeter for small biological samples, Oikos, 15:130.CrossRefGoogle Scholar
  128. Pierrot-Bults, A. C., and van der Spoel, S., 1979, General conclusions, in: “Zoogeography and diversity in plankton,” S. van der Spoel and A. C. Pierrot-Bults, eds., Edward Arnold, London.Google Scholar
  129. Pimm, S. L., and Lawton, J. H., 1977, Number of trophic levels in ecological communities, Nature, 268:329.CrossRefGoogle Scholar
  130. Platt, T., Mann, K. H., and Ulanowicz, R. E., eds., 1981, “Mathematical models in bilogical oceanography,” (Mongr.Oceanogr. Methodol. 7.), Unesco, Paris.Google Scholar
  131. Pomeroy, L. R., 1974, The ocean’s food web a changing paradigm, BioSciences, 24:499.Google Scholar
  132. Pomeroy, L. R., 1979, Secondary production mechanisms of continental shelf communities, in: “Ecological processes in coastal and marine ecosystems,” R. J. Livingston, ed., Plenum Press, New York.Google Scholar
  133. Pomeroy, L. R., and Johannes, R. E., 1968, Occurrence and respiration of ultraplankton in the upper 500m of the ocean, Deep-Sea Res., 15:381.Google Scholar
  134. Poulet, S. A., 1973, Grazing of Pseudocalanus on naturally occurring particulate matter, Limnol.Oceanogr., 18:564.CrossRefGoogle Scholar
  135. Poulet, S. A., 1974, Seasonal grazing of Pseudocalanus minutus on particles, Mar.Biol., 25:109.CrossRefGoogle Scholar
  136. Poulet, S. A., 1976, Feeding of Pseudocalanus minutus on living and non-living particles, Mar.Biol., 34:117.CrossRefGoogle Scholar
  137. Poulet, S., A., and Chanut, J. P., 1975, Non-selective feeding of Pseudocalanus minutus, J.Fish.Res.Bd.Can., 32:706.CrossRefGoogle Scholar
  138. Pugh, P. R., 1978, The application of particle counting to an understanding of the small-scale distribution of plankton, in: “Spatial Pattern in Plankton Communities,” J. H. Steele, ed., Plenum Press, New York.Google Scholar
  139. Rakusa-Suszczewski, S., 1969, The food and feeding habits of Chaetognatha in the seas around the British Isles, Pol.Arch.Hydrobiol., 16:213.Google Scholar
  140. Reichle, D. E., O’Neill, R. V., and Harris, W. F., 1975, Principles of energy and material exchange, in: “Unifying Concepts in Ecology,” W. H. van Dobben and L. McConnell, eds., D. W. Junk, B.V. Publishers, The Hague.Google Scholar
  141. Richman, S., Heinle, D. R., and Huff, R., 1977, Grazing by adult estuarine copepods of the Chesapeake Bay, Mar.Biol., 42:69.CrossRefGoogle Scholar
  142. Ricker, W. E., 1968, in: “Methods of assessment of fish production in freshwaters,” (IBP Handbk. 3), Blackwell, Oxford.Google Scholar
  143. Ricker, W. E., 1978, On computing production, Limnol.Oceanogr., 28:379.CrossRefGoogle Scholar
  144. Rigler, F. H., 1975, The concept of energy flow and nutrient flow between trophic levels, in: “Unifying Concepts in Ecology,” W. H. van Dobben and L. McConnel, eds., D. W. Junk, B.V. Publishers, The Hague.Google Scholar
  145. Riley, G. A., 1946, Factors controlling phytoplankton populations on Georges Bank, J.Mar.Res., 6:54.Google Scholar
  146. Riley, G. A., 1947, A theoretical analysis of the Zooplankton population of Georges Bank, J.Mar.Res., 6:104.Google Scholar
  147. Roger, C., 1973, Recherches sur la situation trophique d’un groupe d’organismes pilagiques (Euphausiacea), 1. Niveau trophiques des espèces, Mar.Biol,., 18:312.Google Scholar
  148. Roman, M. R., and Rublee, P. A., 1981, A method to determine in situ Zooplankton grazing rates on natural particle assemblages, Mar.Biol., 65:303.CrossRefGoogle Scholar
  149. Sage, A. P., and Milsa, J. I., 1971, “Systems Identification,” Academic Press, New York.Google Scholar
  150. Schnack, S. B., 1982, The structure of the mouthparts of copepods in Kiel Bay, Meeresforsch., 29:89.Google Scholar
  151. Sheldon, R. W., and Parsons, T. R., 1967a, A continuous size spectrum for particulate matter in the sea, J.Fish.Res.Bd.Can., 24:900.Google Scholar
  152. Sheldon, R. W., and Parsons, T. R., 1967b, A practical manual on the uses of the Coulter Counter in marine science, Coulter Electronics, Inc., Toronto, Ont.Google Scholar
  153. Sheldon, R. W., Prakash, A., and Sutcliffe, Jr., W. H., 1972, The size distribution of particles in the ocean, Limnol.Oceanogr., 17:327.CrossRefGoogle Scholar
  154. Shuskina, E. A., and Kisliakov, Iu.Ia., 1975, An estimation of the Zooplankton productivity in the equatorial part of the Pacific Ocean in the Peruvian upwelling, in: “Ecosystems of the pelagic zone of the Pacific Ocean,” M. E. Vinogradov, ed., V.102. Trudy Instituta Okeanologii (Transi. CUEA Office, Duke Univ., Mar.Lab., Beaufort, N.C.).Google Scholar
  155. Sieburth, J. McN., 1977, Report on biomass and productivity of microorganisms in planktonic ecosystems, Hegol.Wiss.Meeresunters., 30:694.Google Scholar
  156. Slobodkin, L. B., 1962, Energy in animal ecology, Adv.Ecol.Res., 1:69.CrossRefGoogle Scholar
  157. Smayda, T. J., 1966, A quantitative analysis of the phytoplankton of the Gulf of Panama. III. General ecological conditions and the plankton dynamics at 8º 46′N, 79° 23′W from November 1954 to May 1957, Inter.Amer.Trop.Tuna Comm.Bull., 11:355.Google Scholar
  158. Smith, D. F., Bulleid, N. C., Campbell, R., Higgins, H. W., Rowe, F., Tranter, D. J., and Tranter, H., 1979, Marine food-web analysis: an experimental study of demersal Zooplankton using isotopically labelled prey species, Mar.Bio1., 54:45.Google Scholar
  159. Smith, D. F., and Horner, S. M.J., 1981, Tracer kinetic analysis applied to problems in Marine Biology, in: “Physiological bases of phytoplankton ecology,” T. Platt, ed., Can.Buil.Fish.Aquat, Sci., 210:346.Google Scholar
  160. Sonntag, N. C., and Parslow, J., 1981, Technique of systems identification applied to estimating copepod production, J.Plank.Res., 3:461.CrossRefGoogle Scholar
  161. Steele, J. H., 1974, The Structure of Marine Ecosystems, Harvard Univ. Press, Cambridge, Mass.Google Scholar
  162. Steele, J. H., 1978, Some comments of plankton patches, in: “Spatial pattern in plankton communities,” J. H. Steele, ed., Plenum Press, New York.Google Scholar
  163. Steele, J. H., and Frost, B. W., 1977, The structure of plankton communities, Phil.Trans.R.Soc.Lond.B.Biol.Sci., 280:485.CrossRefGoogle Scholar
  164. Steele, J. H., and Henderson, E. W., 1979, Spatial patterns in North Sea plankton, Deep-Sea Res., 26:955.CrossRefGoogle Scholar
  165. Steeman Nielsen, E., 1957, The balance of phytoplankton and Zooplankton in the sea, J.Cons.Int.Explor.Mer., 23:128.Google Scholar
  166. Sorokin, Yu. I., 1975, Heterotrophic microplankton as a component of marine ecosystems, J.Gen.Biol., 36:716 (in Russian).Google Scholar
  167. Sorokin, Yu. I., 1978, Decomposition of organic matter and nutrient regeneration, in: “Marine Ecology,” O. Kinne, ed., 4:501, Interscience, London and New York.Google Scholar
  168. Sorokin, Yu. I., 1981, Microheterotrophic organisms, in: “Analysis of Marine Ecosystems,” A. R. Longhurst, ed., Academic Press, London.Google Scholar
  169. Sysoeva, T. K., and Degterova, A. A., 1965, The relation between the feeding of cod larvae and pelagic fry and the distribution and abundance of their pricipal food organisms, ICNAF Spec.Publ., 6:411.Google Scholar
  170. Tansley, A., 1935, The use and abuse of vegetational concepts and terms, Ecology, 16:284.CrossRefGoogle Scholar
  171. Taylor, B. E., and Slatkin, M., 1981, Estimating birth and death rates of Zooplankton, Limnol.Oceanogr., 26:143.CrossRefGoogle Scholar
  172. Teal, J. M., 1957, Community metabolism in a temperate cold spring, Ecol.Monogr., 27:283.CrossRefGoogle Scholar
  173. Teal, J. M., 1962, Energy flow in the salt marsh ecosystem of Georgia, Ecology, 43:614.CrossRefGoogle Scholar
  174. Tranter, D. J., 1976, Herbivore production, in: “The Ecology of the Seas,” D. H. Cushing and J. J. Walsh, eds., Blackwell Scientific, Oxford.Google Scholar
  175. Vanderploeg, H. A., 1981, Effect of algal length/apeture length ratio on Coulter analyses of lake seston, Can.J.Fish.Aquat,Sci., 38:912.CrossRefGoogle Scholar
  176. van der Spoel, S., and Pierrot-Bults, A. C., eds., 1979, “Zoogeography and Diversity in Plankton,” Edward Arnold, London.Google Scholar
  177. Vinogradov, M. E., 1981, Ecosystems of equatorial upwellings, in: “Analysis of Marine Ecosystems,” A. R. Longhurst, ed., Academic Press, London.Google Scholar
  178. Vinogradov, M. E., and Shuskina, E. A., 1978, Some development patterns of plankton communities in the upwelling areas of the Pacific Ocean, Mar.Biol., 48:357.CrossRefGoogle Scholar
  179. Walsh, J. J., 1981, Shelf-sea ecosystems, in: “Analysis of Marine Ecosystems,” A. R. Longhurst, ed., Academic Press, London.Google Scholar
  180. Wiebe, P. H., Hulbert, E. M., Carpenter, E. J., John, A. E., Kapp III, G. P., Boyd, S. H., Ortner, P. B., and Cox, J. L., 1976, Gulf Stream cold core rings: large scale interaction sites for ocean plankton communities, Deep-Sea Res., 23:695.Google Scholar
  181. Williams, P. J. LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the plankton food web, Kieler Meeresforsch., Sonderhaft 5:1.Google Scholar
  182. Williams, P. J., Leb, 1982, Microbial contribution to overall plankton community respiration — studies in enclosures, in: “Marine Mesocosms,” G. D. Grice, M. R. Reeve, eds., Springer-Verlag, New York.Google Scholar
  183. Williams, P. J. LeB., Raine, R. C. T., and Bryan, J. R., 1979, Agreement between the 14C and oxygen methods of measuring phytoplankton production of the photosynthetic quotient, Oceano1.Acta., 2:411.Google Scholar
  184. Winberg, G., 1936, Some general problems concerning the productivity of lakes, Zoolog.zhurn., 15:587.Google Scholar
  185. Winberg, G. G., 1971, “Methods for the estimation of production of aquatic animals,” Academic Press, London and New York.Google Scholar
  186. Wyatt, T., 1976, Food chains in the sea, in: “The Ecology of the Seas,” D. H. Cushing and J. J. Walsh, eds., Blackwell Scientific Publishers, Oxford.Google Scholar
  187. Yablonskaya, E. A., 1962, A study of the seasonal population dynamics of the plankton copepods as a method of their production, Rapp.P.-v.Réun.Cons.Int.Explor.Mer., 153, 224.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. Williams
    • 1
  1. 1.Natural Environment Research CouncilInstitute for Marine Environmental ResearchPlymouthUK

Personalised recommendations