Skip to main content

Cycling of Organic Matter by Bacterioplankton in Pelagic Marine Ecosystems: Microenvironmental Considerations

  • Chapter

Part of the book series: NATO Conference Series ((MARS,volume 13))

Abstract

Recently developed methods for measuring production rates of heterotrophic bacteria have shown that the bacterioplankton is a major route for the flux of material and energy in marine ecosystems (Hagström et al., 1979; Fuhrman and Azam, 1980, 1982; Williams, 1981). Even conservative estimates (Fuhrman and Azam, 1980, 1982) show that the measured bacterial productivity corresponds to 10–50% of the primary productivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammerman, J. W., and Azam, F., 1981, Dissolved cyclic adenosine monophosphate (cAMP) in the sea and uptake of cAMP by marine bacteria, Mar.Ecol.Prog.Ser., 5:85.

    Article  Google Scholar 

  • Ammerman, J, W., and Azam, F., 1982, Uptake of cyclic AMP by natural populations of marine bacteria, Appl.Environ.Microbiol., 43: 869.

    Google Scholar 

  • Azam, F., and Ammerman, J. W., 1982, Growth of free-living marine bacteria around sources of dissolved organic matter, EOS, 63:54.

    Google Scholar 

  • Azam, F., and Hodson, R. E., 1977, Size distribution and activity of marine microheterotrophs, Limnol.Oceanogr., 22:492.

    Article  Google Scholar 

  • Azam, F., and Hodson, R. E., 1981, Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria, Mar.Ecol.Prog.Ser., 6:213.

    Article  Google Scholar 

  • Bell, W., and Mitchell, R., 1972, Chemotactic and growth responses of marine bacteria to algal extracellular products, Biol.Bull., 143:265.

    Article  Google Scholar 

  • Billen, G., Joiris, C., Winant, J., and Gillian, G., 1980, Concentration and metabolism of small organic molecules in estuar-ine, coastal and open sea environments of the Southern North Sea, Est.Coast.Mar.Sci., 11:279.

    Article  Google Scholar 

  • Botsford, J. L., 1981, Cyclic nucleotides in procaryotes, Microbiol.Rev., 45:620.

    Google Scholar 

  • Burney, C. M., Johnson, K. M., and Sieburth, J. McN., 1981, Diel flux of dissolved carbohydrate in a salt marsh and a simulated estuarine ecosystem, Mar.Biol., 63:175.

    Article  Google Scholar 

  • Chet, I., and Mitchell, R., 1976, An enrichment technique for isolation of marine chemotactic bacteria, Microbial Ecol., 3:75.

    Article  Google Scholar 

  • Copping, A. E., and Lorenzen, C. J., 1980, Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer, Limnol.Oceanogr., 25:873.

    Article  Google Scholar 

  • Derenbach, J. B., and Williams, P. J. leB., 1974, Autotrophic and bacterial production: Fractionation of plankton populations by differential filtration of samples from the English Channel, Mar.Biol., 25:263.

    Google Scholar 

  • Fenchel, T., 1980, Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance, Mircrobial Ecol., 6:13.

    Google Scholar 

  • Francko, D. A., and Wetzel, R. G., 1980, Cyclic adenosine -3′:5′-monophosphate: Production and extracellular release from green and blue-green algae, Physiol.Plant, 49:65.

    Google Scholar 

  • Francko, D. A., and Wetzel, R. G., 1981, Dynamics of cellular and extracellular cAMP in Anabaena Flos-Aquae (cyanophyta): Intrinsic culture variability and correlation with metabolic variables, J.Phycol., 17:129.

    Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, Appl.Environ.Microbiol., 39:1085.

    Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results, Mar.Biol., 66: 109.

    Google Scholar 

  • Goldman, J. C., McCarthy, J. J., and Peavey, G. D., 1979, Growth rate influence on the chemical composition of phytoplankton in oceanic waters, Nature, 279:210.

    Article  Google Scholar 

  • Hagström, A., Larsson, U., Hörstedt, P., and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl.Environ.Microbiol., 37:805.

    Google Scholar 

  • Hodson, R. E., Carlucci, A. F., and Azam, F., 1979, Glucose transport in a low nutrient marine bacterium, Abstr.Annu.Meet.Am.Soc.Microbiol., N 59:189.

    Google Scholar 

  • Jackson, G. A., 1980, Phytoplankton growth and Zooplankton grazing in oligotrophic oceans, Nature, 284:439.

    Article  Google Scholar 

  • Joiris, C., Billen, G., Lancelot, C., Daro, M. H., Mommaerts, J. P., Bertels, A., Bossicarta, M., Nijs, J., and Hecq, J. H., 1982, A budget of carbon cycling in the Belgian coastal zone: Relative roles of Zooplankton, bacterioplankton and benthos in the utilization of primary production, Neth.J.Sea Res., 16: 260.

    Article  Google Scholar 

  • Lampert, W., 1978, Release of dissolved organic carbon by grazing Zooplankton, Limnol.Oceanogr., 23:831.

    Article  Google Scholar 

  • Lancelot, C., 1979, Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the Southern North Sea, as determined by short-term kinetics, Mar.Ecol.Prog.Ser., 1:179.

    Article  Google Scholar 

  • Larsson, U., and Hagström, A., 1979, Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar.Biol., 52:199.

    Article  Google Scholar 

  • Lehman, J. T., and Scavia, D., 1982, Microscale patchiness of nutrients in plankton communities, Science, 216:729.

    Article  Google Scholar 

  • Mopper, K., Dawson, R., Liebezeit, G., and Ittekkot, V., 1980, The monosaccharide spectra of natural waters, Mar.Chem., 10:55.

    Article  Google Scholar 

  • Mopper, K., and Lindroth, P., 1982, Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis, Limnol.Oceanogr., 27:336.

    Article  Google Scholar 

  • Rheinheimer, G., 1971, “Aquatic Microbiology,” J. Wiley and Sons, London.

    Google Scholar 

  • Sieburth, J. McN., 1968, Observations on planktonic bacteria in Narragansett Bay, Rhode Island: a resume, Misaki.Mar.Biol.Inst., Kyoto Univ., 12:49.

    Google Scholar 

  • Smith, D. F., and Higgins, H. W., 1978, An interspecies regulatory control of dissolved organic carbon production by phytoplankton and incorporation by microheterotrophs, in: “Microbial Ecology,” M. W. Loutit and J. A. R. Miles, eds., Spring-Verlag, Berlin.

    Google Scholar 

  • Stevenson, L. H., 1978, A case for bacterial dormancy in aquatic systems, Microbial Ecol., 4:127.

    Article  Google Scholar 

  • Varon, M., and Shilo, M., 1980, Ecology of aquatic bdellovibrios, in: “Adv. Aquatic Microbiol.,” M. R. Droop and H. W. Jannasch, eds., Academic Press, London.

    Google Scholar 

  • Wellman, A. M., and Paerl, H. W., 1981, Rapid Chemotaxis assay using radioactively labeled bacterial cells, Appl.Environ.Microbiol., 42:216.

    Google Scholar 

  • Wiebe, W. J., and Smith, D. F., 1977, Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs, Mar.Biol., 42:213.

    Article  Google Scholar 

  • Williams, P. J. leB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, 15th European Symposium on Marine Biology, Kiel F.R.G., Kieler Meeresforsch., Sonderh., 5:1.

    Google Scholar 

  • Wright, R.T., and Burnison, B. K., 1979, Heterotrophic activity measured with radiolabeled organic substrates, in: “Native Aquatic Bacteria: Enumeration, Activity, and Ecology,” J. W. Costerton and R. R. Colwell, eds., Am. Soc. for Testing and Materials, STP 695.

    Google Scholar 

  • Young, L. Y., and Mitchell, R., 1973, Negative Chemotaxis of marine bacteria to toxic chemicals, Appl.Microbiol., 25:972.

    Google Scholar 

  • ZoBell, C. E., 1946, “Marine Microbiology. A Monograph on Hydro-bacteriology,” Chronica Botanica Co., Waltham, Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Azam, F., Ammerman, J.W. (1984). Cycling of Organic Matter by Bacterioplankton in Pelagic Marine Ecosystems: Microenvironmental Considerations. In: Fasham, M.J.R. (eds) Flows of Energy and Materials in Marine Ecosystems. NATO Conference Series, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0387-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0387-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0389-4

  • Online ISBN: 978-1-4757-0387-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics