Cycling of Organic Matter by Bacterioplankton in Pelagic Marine Ecosystems: Microenvironmental Considerations

  • Farooq Azam
  • James W. Ammerman
Part of the NATO Conference Series book series (NATOCS, volume 13)


Recently developed methods for measuring production rates of heterotrophic bacteria have shown that the bacterioplankton is a major route for the flux of material and energy in marine ecosystems (Hagström et al., 1979; Fuhrman and Azam, 1980, 1982; Williams, 1981). Even conservative estimates (Fuhrman and Azam, 1980, 1982) show that the measured bacterial productivity corresponds to 10–50% of the primary productivity.


Particulate Organic Matter Dissolve Organic Matter Algal Cell Marine Bacterium Dissolve Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammerman, J. W., and Azam, F., 1981, Dissolved cyclic adenosine monophosphate (cAMP) in the sea and uptake of cAMP by marine bacteria, Mar.Ecol.Prog.Ser., 5:85.CrossRefGoogle Scholar
  2. Ammerman, J, W., and Azam, F., 1982, Uptake of cyclic AMP by natural populations of marine bacteria, Appl.Environ.Microbiol., 43: 869.Google Scholar
  3. Azam, F., and Ammerman, J. W., 1982, Growth of free-living marine bacteria around sources of dissolved organic matter, EOS, 63:54.Google Scholar
  4. Azam, F., and Hodson, R. E., 1977, Size distribution and activity of marine microheterotrophs, Limnol.Oceanogr., 22:492.CrossRefGoogle Scholar
  5. Azam, F., and Hodson, R. E., 1981, Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria, Mar.Ecol.Prog.Ser., 6:213.CrossRefGoogle Scholar
  6. Bell, W., and Mitchell, R., 1972, Chemotactic and growth responses of marine bacteria to algal extracellular products, Biol.Bull., 143:265.CrossRefGoogle Scholar
  7. Billen, G., Joiris, C., Winant, J., and Gillian, G., 1980, Concentration and metabolism of small organic molecules in estuar-ine, coastal and open sea environments of the Southern North Sea, Est.Coast.Mar.Sci., 11:279.CrossRefGoogle Scholar
  8. Botsford, J. L., 1981, Cyclic nucleotides in procaryotes, Microbiol.Rev., 45:620.Google Scholar
  9. Burney, C. M., Johnson, K. M., and Sieburth, J. McN., 1981, Diel flux of dissolved carbohydrate in a salt marsh and a simulated estuarine ecosystem, Mar.Biol., 63:175.CrossRefGoogle Scholar
  10. Chet, I., and Mitchell, R., 1976, An enrichment technique for isolation of marine chemotactic bacteria, Microbial Ecol., 3:75.CrossRefGoogle Scholar
  11. Copping, A. E., and Lorenzen, C. J., 1980, Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer, Limnol.Oceanogr., 25:873.CrossRefGoogle Scholar
  12. Derenbach, J. B., and Williams, P. J. leB., 1974, Autotrophic and bacterial production: Fractionation of plankton populations by differential filtration of samples from the English Channel, Mar.Biol., 25:263.Google Scholar
  13. Fenchel, T., 1980, Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance, Mircrobial Ecol., 6:13.Google Scholar
  14. Francko, D. A., and Wetzel, R. G., 1980, Cyclic adenosine -3′:5′-monophosphate: Production and extracellular release from green and blue-green algae, Physiol.Plant, 49:65.Google Scholar
  15. Francko, D. A., and Wetzel, R. G., 1981, Dynamics of cellular and extracellular cAMP in Anabaena Flos-Aquae (cyanophyta): Intrinsic culture variability and correlation with metabolic variables, J.Phycol., 17:129.Google Scholar
  16. Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, Appl.Environ.Microbiol., 39:1085.Google Scholar
  17. Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results, Mar.Biol., 66: 109.Google Scholar
  18. Goldman, J. C., McCarthy, J. J., and Peavey, G. D., 1979, Growth rate influence on the chemical composition of phytoplankton in oceanic waters, Nature, 279:210.CrossRefGoogle Scholar
  19. Hagström, A., Larsson, U., Hörstedt, P., and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl.Environ.Microbiol., 37:805.Google Scholar
  20. Hodson, R. E., Carlucci, A. F., and Azam, F., 1979, Glucose transport in a low nutrient marine bacterium, Abstr.Annu.Meet.Am.Soc.Microbiol., N 59:189.Google Scholar
  21. Jackson, G. A., 1980, Phytoplankton growth and Zooplankton grazing in oligotrophic oceans, Nature, 284:439.CrossRefGoogle Scholar
  22. Joiris, C., Billen, G., Lancelot, C., Daro, M. H., Mommaerts, J. P., Bertels, A., Bossicarta, M., Nijs, J., and Hecq, J. H., 1982, A budget of carbon cycling in the Belgian coastal zone: Relative roles of Zooplankton, bacterioplankton and benthos in the utilization of primary production, Neth.J.Sea Res., 16: 260.CrossRefGoogle Scholar
  23. Lampert, W., 1978, Release of dissolved organic carbon by grazing Zooplankton, Limnol.Oceanogr., 23:831.CrossRefGoogle Scholar
  24. Lancelot, C., 1979, Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the Southern North Sea, as determined by short-term kinetics, Mar.Ecol.Prog.Ser., 1:179.CrossRefGoogle Scholar
  25. Larsson, U., and Hagström, A., 1979, Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar.Biol., 52:199.CrossRefGoogle Scholar
  26. Lehman, J. T., and Scavia, D., 1982, Microscale patchiness of nutrients in plankton communities, Science, 216:729.CrossRefGoogle Scholar
  27. Mopper, K., Dawson, R., Liebezeit, G., and Ittekkot, V., 1980, The monosaccharide spectra of natural waters, Mar.Chem., 10:55.CrossRefGoogle Scholar
  28. Mopper, K., and Lindroth, P., 1982, Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis, Limnol.Oceanogr., 27:336.CrossRefGoogle Scholar
  29. Rheinheimer, G., 1971, “Aquatic Microbiology,” J. Wiley and Sons, London.Google Scholar
  30. Sieburth, J. McN., 1968, Observations on planktonic bacteria in Narragansett Bay, Rhode Island: a resume, Misaki.Mar.Biol.Inst., Kyoto Univ., 12:49.Google Scholar
  31. Smith, D. F., and Higgins, H. W., 1978, An interspecies regulatory control of dissolved organic carbon production by phytoplankton and incorporation by microheterotrophs, in: “Microbial Ecology,” M. W. Loutit and J. A. R. Miles, eds., Spring-Verlag, Berlin.Google Scholar
  32. Stevenson, L. H., 1978, A case for bacterial dormancy in aquatic systems, Microbial Ecol., 4:127.CrossRefGoogle Scholar
  33. Varon, M., and Shilo, M., 1980, Ecology of aquatic bdellovibrios, in: “Adv. Aquatic Microbiol.,” M. R. Droop and H. W. Jannasch, eds., Academic Press, London.Google Scholar
  34. Wellman, A. M., and Paerl, H. W., 1981, Rapid Chemotaxis assay using radioactively labeled bacterial cells, Appl.Environ.Microbiol., 42:216.Google Scholar
  35. Wiebe, W. J., and Smith, D. F., 1977, Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs, Mar.Biol., 42:213.CrossRefGoogle Scholar
  36. Williams, P. J. leB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, 15th European Symposium on Marine Biology, Kiel F.R.G., Kieler Meeresforsch., Sonderh., 5:1.Google Scholar
  37. Wright, R.T., and Burnison, B. K., 1979, Heterotrophic activity measured with radiolabeled organic substrates, in: “Native Aquatic Bacteria: Enumeration, Activity, and Ecology,” J. W. Costerton and R. R. Colwell, eds., Am. Soc. for Testing and Materials, STP 695.Google Scholar
  38. Young, L. Y., and Mitchell, R., 1973, Negative Chemotaxis of marine bacteria to toxic chemicals, Appl.Microbiol., 25:972.Google Scholar
  39. ZoBell, C. E., 1946, “Marine Microbiology. A Monograph on Hydro-bacteriology,” Chronica Botanica Co., Waltham, Mass.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Farooq Azam
    • 1
  • James W. Ammerman
    • 1
  1. 1.Institute of Marine Resources, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations