The Biological Role of Detritus in the Marine Environment

  • R. C. Newell
Part of the NATO Conference Series book series (NATOCS, volume 13)


The heterotrophic fate of detrital material in the marine environment has attracted widespread interest since the pioneer work of Teal (1962) and others established that primary production by wetland vegetation in coastal saltmarshes of Georgia, U.S.A., greatly exceeded direct consumption by grazing herbivores. Such material was thus available for decomposition or export as a potential trophic resource for consumer organisms in the shallow waters bordering such wetland ecosystems (see Darnell, 1967a,b; Odum, 1971; Keefe, 1972; Day et al., 1973; Gosselink and Kirby, 1974; Woodwell et al., 1977; for reviews, Newell, 1979; Nixon, 1980). Much the same situation exists on many rocky shores which are dominated by kelp beds. In contrast to the situation in the open sea, where much of the primary production is thought to be consumed directly by herbivores (Steele, 1974), the discrepancy between the primary production and the material which is directly removed by grazers near to kelp beds suggests that as in wetland ecosystems, large quantities of photo-assimilated material may become available to consumer organisms after fragmentation and partial decomposition (see Mann, 1972, 1973; Field et al., 1977; Newell et al., 1982).


Growth Yield Bacterial Biomass Detrital Material Plant Detritus Organic Detritus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, H. L., 1973, Dissolved organic carbon: patterns of utilisation and turnover in two small lakes, Int.Revue Ges.Hydrobiol., 58:617.Google Scholar
  2. Anderson, J. M., 1975, Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter, J.Anim.Ecol., 44:475.Google Scholar
  3. Andrews, P., and Williams, P. J. le B., 1971, Heterotrophic utilization of dissolved organic compounds in the sea. III. Measurements of the oxidation rate and concentration of glucose and amino acids in seawater, J.Mar.Biol.Ass.U.K, 51:111.Google Scholar
  4. Azam, F., and Hodson, R. E., 1981, Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria, Mar.Ecol.Prog.Ser., 6:213.Google Scholar
  5. Banse, K., 1974, On the role of bacterioplankton in the tropical ocean, Mar.Biol., 24:1.Google Scholar
  6. Baker, J. H., and Bradnam, L. A., 1976, The role of bacteria in the nutrition of aquatic detritivores, Oecologia (Berl.), 24:95.Google Scholar
  7. Billen, G., Joiris, C., Wijnant, J., and Gillian, G., 1980, Concentration and microbial utilization of small organic molecules in the Scheldt Estuary the Belgian coastal zone of the North Sea and the English Channel, Estuar.Coast.Mar.Sci., 11:279.Google Scholar
  8. Bodungen, B. V., Bröckel, K. V., Smetacek, V., Zeitzschel, B., 1981, Growth and sedimentation of the phytoplankton spring bloom in the Bornholm Sea (Baltic Sea), Kieler Meeresforsch., 5:49.Google Scholar
  9. Burkill, P. H., 1978, Quantitative aspects of the ecology of marine planktonic ciliated protozoans with special reference to Uronema marinum Dujardin, Ph.D Thesis, Univ. of Southampton.Google Scholar
  10. Calkins, G. N., and Summers, F. M., (eds.), 1941, in: “Protozoa in Biological Research,” Columbia University Press, New York.Google Scholar
  11. Calow, P., 1977, Conversion efficiencies in heterotrophic organisms, Biol.Rev., 52:385.Google Scholar
  12. Cammen, L. M., 1980a, Ingestion rate: an empirical model for aquatic deposit feeders and detritovores, Oecologia (Berl.), 44:303.Google Scholar
  13. Cammen, L. M., 1980b, The significance of microbial carbon in the nutrition of the deposit feeding polychaete Nereis succinea, Mar.Biol., 61:9.Google Scholar
  14. Cammen, L. M., Rublee, P., and Hobbie, J. E., 1978, The significance of microbial carbon in the nutrition of the polychaete Nereis succinea and other aquatic deposit feeders, Sea Grant Pub. UNC-SG-78–12, North Carolina State University, Raleigh.Google Scholar
  15. Carter, R. A., 1982, Phytoplankton biomass and production in a Southern Benguela kelp bed system, Mar.Eco1.Prog.Ser., 8:9.Google Scholar
  16. Chretiennot, M. J., 1974, Nanoplancton de flaques supralittorales de lat region de Marseille, Protistologica, 10:477.Google Scholar
  17. Crawford, C. C., Hobbie, J. E., and Webb, K. L., 1974, The utilization of dissolved free amino acids by estuarine microorganisms, Ecology, 55:551.Google Scholar
  18. Dale, N. C., 1974, Bacteria in intertidal sediments, factors related to their distribution, Limnol.Oceanogr., 19:509.Google Scholar
  19. Daley, R. J., 1979, Direct epifluorescence enumeration of native aquatic bacteria: uses, limitations and comparative accuracy, in: “Native Aquatic Bacteria: enumeration, activity and ecology,” J. W. Costerton and R. R. Colwell, eds., Amer. Soc. for Testing and Materials.Google Scholar
  20. Darnell, R. M., 1967, The organic detritus problem, in: “Estuaries,” G. H. Lauff, ed., Pubis. Am. Ass. Advant Sci.Google Scholar
  21. Darnell, R. M., 1967b, Organic detritus in relation to the estuarine ecosystem, in: “Estuaries,” G. H. Lauff, ed., Pubis. Am. Ass. Advant Sci.Google Scholar
  22. Day, J. W., Smith, W. G., Wagner, P. R. and Stowe, W. C., 1973, Community structure and carbon budget of a salt marsh and shallow bay estuarine system in Louisiana, Center for Wetland Resources, Louisiana State Univ. Publ. LSU-SG-72–04.Google Scholar
  23. Dempsey, M. J., 1981, Marine bacterial fouling: a scanning electron microscope study, Mar.Biol., 61:305.Google Scholar
  24. Fenchel, T., 1970, Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum, Limnol. Oceanogr., 15:14.Google Scholar
  25. Fenchel, T., 1975, The quantitative importance of the benthic micro-fauna of an arctic tundra pond, Hydrobiologia, 46:445.Google Scholar
  26. Fenchel, T., 1982a, Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology, Mar.Ecol.Prog.Ser., 8:211.Google Scholar
  27. Fenchel, T., 1982b, Ecology of heterotrophic microflagellates. II. Bioenergetics and growth, Mar.Ecol.Prog.Ser., 8:225.Google Scholar
  28. Fenchel, T., 1982c, Ecology of heterotrophic microflagellates. III. Adaptations to heterogeneous environments, Mar.Ecol.Prog.Ser., 9:25.Google Scholar
  29. Fenchel, T., 1982d, Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as consumers of bacteria, Mar.Ecol.Prog.Ser., 9:35.Google Scholar
  30. Fenchel, T. M., and Jorgensen, B. B., 1976, Detritus food chains of aquatic ecosystems and the role of bacteria, Adv.Microb.Ecol., 1:1.Google Scholar
  31. Ferguson, R. L., and Murdoch, M. B., 1978, Microbiology of the Newport River Estuary. Atlantic Fisheries Center Ann. Rept. to Atomic Energy Commission, NOAA National Marine Fisheries Service, Beaufort, N.N. 63–83.Google Scholar
  32. Field, J. G., Jarman, N. G., Dieckmann, G. S., Griffiths, C. L., Velimirov, B., and Zoutendyk, P., 1977, Sun, waves, seaweed and lobsters: the dynamics of a west coast kelp bed, S.Afr.J.Sci., 73:7.Google Scholar
  33. Fuhrman, J. A., 1981, Influence of method on the apparent size distribution of bacterioplankton cells: Epifluorescence microscopy compared to scanning electron microscopy, Mar.Ecol.Prog.Ser., 5:103.Google Scholar
  34. Gordon, G. C., Robinson, G. G. C., Hondzel, L. L., and Gillespie, D. C., 1973, A relationship between heterotrophic utilization of organic acids and bacterial populations in west Blue Lake, Manitoba, Limnol.Oceanogr., 18:264.Google Scholar
  35. Gosselink, J. G., and Kirby, C. J., 1974, Decomposition of salt marsh grass, Spartina alterniflora Loisel, Limnol.Oceanogr., 19:825.Google Scholar
  36. Haas, L. W., and Webb, K. L., 1979, Nutritional mode of several non-pigmented microflagellates from the York River Estuary, Virginia, J.Exp.Mar.Biol.Ecol., 39:125.Google Scholar
  37. Haines, E. B., and Hanson, R. B., 1979, Experimental degradation of detritus made from the salt marsh plants Spartina alterniflora L., and Juncus roemerianus Scheele, J.Exp.Mar.Biol.Ecol., 40:27.Google Scholar
  38. Hargrave, B. T., 1970a, The utilization of benthic microflora by Hyalella azteca (Amphipoda), J.Anim.Ecol., 39:427.Google Scholar
  39. Hargrave, B. T., 1970b, The effect of a deposit-feeding amphipod on the metabolism of benthic microflora, Limnol.Oceanogr., 51:21.Google Scholar
  40. Hargrave, B. T., 1971, An energy budget for a deposit feeding amphipod, Limnol.Oceanogr., 16:19.Google Scholar
  41. Hemmingsen, A. M., 1960, Energy metabolism as related to body size and respiratory surfaces and its evolution, Rep.Steno.Mem.Hosp.Copenhagen, 9:7.Google Scholar
  42. Hobbie, J. E., 1967, Glucose and acetate in freshwater: concentrations and turnover rates, in: “Chemical environment in aquatic habitat,” H. L. Gotterman and R. S. Clymo, eds., North Holland Publishing Co., Amsterdam.Google Scholar
  43. Hobbie, J. E., and Crawford, C. C., 1969, Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters, Limnol.Oceanogr., 14:528.Google Scholar
  44. Hobbie, J. E., Daley, R. T., and Jasper, S., 1977, Use of nuclepore filters for counting bacteria by fluorescence microscopy, Appl.Environ.Microbiol., 33:1225.Google Scholar
  45. Hollibaugh, J. T., Fuhrman, J. A., and Azam, F., 1980, Radioactively labeling of natural assemblages of bacterioplankton for use in trophic studies, Limnol.Oceanogr., 25:172.Google Scholar
  46. Holligan, P. M., Harris, R. P., Head, R. N., Linley, E. A. S., Lucas, M. I., Newell, R. C., Tranter, P. R. G., and Weekley, C. M., The partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel, Mar.Ecol.Prog.Ser., (in press)Google Scholar
  47. Humphreys, W. F., 1979, Production and respiration in animal populations, J.Anim.Ecol., 48:427.Google Scholar
  48. Jensen, K. T., and Siegismund, M. R., 1980, The importance of diatoms and bacteria in the diet of Hydrobia species, Ophelia 19 (Suppl.):193.Google Scholar
  49. Joint, I. R., and Morris, R. J., 1982, The role of bacteria in the turnover of organic matter in the sea, Oceanogr.Mar.Biol.Ann.Rev., 20:65.Google Scholar
  50. Kaushik, N. K., and Hynes, H. B. N., 1971, The fate of dead leaves that fall into streams, Arch.Hydrobiol., 68:465.Google Scholar
  51. Keefe, C. W., 1972, Marsh production: A summary of the literature, Contrib.Mar.Sci., 16:163.Google Scholar
  52. Kepkay, P. E., and Novitsky, J. A. 1980, Microbial control of organic carbon in marine sediments: coupled chemoautotrophy and heterotrophy, Mar.Biol., 55:261.Google Scholar
  53. Koop, K., Newell, R. C., and Lucas, M. I., 1982a, Biodegradation and carbon flow based on kelp (Ecklonia maxima) debris in a sandy beach microcosm, Mar.Ecol.Prog.Ser., 7:315.Google Scholar
  54. Koop, K., Newell, R. C. and Lucas, M. I., 1982b, Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore, Mar.Ecol.Prog.Ser., 9:91.Google Scholar
  55. Larsson, V., and Hagström, A., 1979, Phytoplankton exudate release as an energy source for the growth of pelagic bacteria, Mar.Biol., 52:199.Google Scholar
  56. Lighthart, B., 1969, Planktonic and benthic Bactivorous protozoa at eleven stations in Puget Sound and adjacent Pacific Ocean, J.Fish.Res.Bd.Can., 26:299.Google Scholar
  57. Linley, E. A. S., and Field, J. G., 1982, The nature and ecological significance of bacterial aggregation in a nearshore upwelling ecosystem, Est.Coastal Shelf Sci., 14:1.Google Scholar
  58. Linley, E. A. S., and Newell, R. C., 1981, Microheterotrophic communities associated with the degradation of kelp debris, Kieler Meeresforsch., 5:345.Google Scholar
  59. Linley, E. A. S., Newell, R. C., and Bosma, S. A., 1981, Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). 1. Development of microbial communities associated with the degradation of kelp mucilage, Mar.Ecol.Prog.Ser., 4:31.Google Scholar
  60. Lousier, J. D., 1982, Colonisation of decomposing deciduous leaf litter by Testacea (Protozoa, Phizopoda): Species succession, abundance, and biomass, Oecologia (Berl.), 52:381.Google Scholar
  61. Lucas, M. I., Newell, R. C., and Velimirov, B., 1981, Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). 2. Differential utilisation of dissolved organic components from kelp mucilage, Mar.Ecol.Prog.Ser., 4:43.Google Scholar
  62. Luria, S. E., 1960, The bacterial protoplasm: composition and organisation, in: “The bacteria,” Vol. 1, I. C. Gunsalus and R. Y. Stanier, eds., Academic Press, New York.Google Scholar
  63. Mann, K. H., 1972, Macrophyte production and detitus food chains in coastal waters, Mem.1st.Ital.Idrobiol., 29 (Suppl.):353.Google Scholar
  64. Mann, K. H., 1973, Seaweeds: their productivity and strategy for growth, Science, N.Y., 182:975.Google Scholar
  65. McNeill, S., and Lawton, J. M., 1970, Annual production and respiration in animal populations, Nature, Lond., 225:472.Google Scholar
  66. Newell, R. C., 1965, The role of detritus in the nutrition of two marine deposit-feeders, the prosobranch Hydrobia ulvae and the bivalve Macoma balthica, Proc.Zool.Soc.Lond., 144:25.Google Scholar
  67. Newell, R. C., 1979, “Biology of intertidal animals,” Marine Ecological Surveys, Faversham, Kent.Google Scholar
  68. Newell, R. C., and Field, J. G., 1983, The contribution of bacteria and detritus to carbon and nitrogen flow in the benthic community, Mar.Biol.Letters, 4:23.Google Scholar
  69. Newell, R. C., Field, J. G., and Griffiths, C. L., 1982, Energy balance and significance of micro-organisms in a kelp bed sommunity, Mar.Ecol.Prog.Ser., 8:103.Google Scholar
  70. Newell, R. C., Linley, E. A. S., and Lucas, M. I., 1983, Microbial production and carbon conversion based on saltmarsh plant debris, Est.Coast Shelf Sci., (in press).Google Scholar
  71. Newell, R. C., and Lucas, M. I., 1981, The quantitative significance of dissolved and particulate organic matter released during fragmentation of kelp in coastal waters, Kieler Meeresforsch., 5:356.Google Scholar
  72. Newell, R. C., Lucas, M. I., and Linley, E. A. S., 1981, Rate of degradation and efficiency of conversion of phytoplankton debris by marine micro-organisms, Mar.Ecol.Prog.Ser., 6:123.Google Scholar
  73. Newell, R. C., Lucas, M. I., Velimirov, B., and Seiderer, L. J., 1980, Quantitative significance of dissolved organic losses following fragmentation of kelp (Ecklonia maxima and Laminaria pallida), Mar.Ecol.Prog.Ser., 2:45.Google Scholar
  74. Nixon, S. W., 1980, Between coastal marshes and coastal waters — a review of twenty years of speculation and research on the role of salt marches in estuarine productivity and water chemistry, in: “Estuarine and Wetland Processes,” P. Hamilton and K. B. MacDonald, eds., Plenum Publ. Corp., N.Y.Google Scholar
  75. Odum, E. P., 1971, “Fundamentals of Ecology,” 3rd edn., W. B. Saunders, San Francisco.Google Scholar
  76. Ogura, N., 1972, Rate and extent of decomposition of dissolved organic matter in surface seawater, Mar.Biol., 13:89.Google Scholar
  77. Ogura, N., 1975, Further studies on decomposition of dissolved organic matter in coastal seawater, Mar.Biol., 31:101.Google Scholar
  78. Ogura, N., and Gotoh, T., 1974, Decomposition of dissolved carbohydrates derived from diatoms of Lake Yuno-Ko, Int.Revue.Ges.Hydrobiol., 59:39.Google Scholar
  79. Park, D., 1972, Methods of detecting fungi in organic detritus in water, Trans.Br.Mycol.Soc., 58:281.Google Scholar
  80. Payne, W. J., 1970, Energy yields and growth of heterotrophs, Ann.Rev.Microbiol., 24:17.Google Scholar
  81. Payne, W. J., and Wiebe, W. J., 1978, Growth yield and efficiency in chemosynthetic microorganisms, Ann.Rev.Microbiol., 32:155.Google Scholar
  82. Pomeroy, L. R. and Johannes, R. E., 1968, Occurrence and respiration of ultraplankton in the upper 500 metres of the ocean, Deep-Sea Res., 51:381.Google Scholar
  83. Robb, F. T., Davies, B. R., Cross, R., Kenyon, C., and Howard-Williams, C., 1979, Cellulolytic bacteria as primary colonizers of Potamogeton pectinatus L. (Sago pond weed) from a brackish wouth-temper-te coastal lake, Microb.Ecol., 5:167.Google Scholar
  84. Robertson, M. L., Mills, A. L., and Zieman, J. C., 1982, Microbial synthesis of detritus-like particulates from dissolved organic carbon released by tropical seagrass, Mar.Ecol.Prog.Ser., 7:279.Google Scholar
  85. Seiderer, L. J., Newell, R. C., and Cook, P. A., 1982, Quantitative significance of style enzymes from two marine mussels (Choromytilus meridionalis Krauss and Perna perna Lamark) in relation to diet, Mar.Biol. Letters, 3:257.Google Scholar
  86. Sieburth, J. McN., 1979, “Sea Microbes”, Oxford Univ. Press, N.Y.Google Scholar
  87. Sieburth, J. McN., Willis, P. J., Johnson, K. M., Burney, C. M., Lavoie, D. M., Hinge, K. R., Caron, D. A., French, F. W., Johnson, P. W., and Davies, G., 1976, Dissolved organic matter and heterotrophic microneuston in the surface microlayers of the North Atlantic, Science, N.Y., 194:1415.Google Scholar
  88. Sorokin, Y. I., 1971a, On the role of bacteria in the productivity of tropical oceanic waters, Int.Revue,Ges.Hydrobiol., 56:1.Google Scholar
  89. Sorokin, Y. I., 1971b, Bacterial populations as components of oceanic ecosystems, Mar.Biol., 11:101.Google Scholar
  90. Sorokin, Y. I., 1972, Bacteria as food for coral reef fauna, Oceanology, 12:169.Google Scholar
  91. Sorokin, Y. I., 1973, Data on biological productivity of the western tropical Pacific Ocean, Mar.Biol., 20:177.Google Scholar
  92. Sorokin, Y. I., 1977, The heterotrophic phase of plankton succession in the Japan Sea, Mar.Biol., 41:107.Google Scholar
  93. Sorokin, Y. I., 1978, Microbial production in the coral-reef community, Arch.Hydrobio1., 83:281.Google Scholar
  94. Sorokin, Y. I., and Kadota, H. eds., 1972, “Techniques for the assessment of microbial production and decomposition in freshwater,” I.B.P. Handbook (23), Blackwell, Oxford.Google Scholar
  95. Steele, J. H., 1974, “The Structure of Marine Ecosystems,” Harvard University Press, Cambridge, Mass.Google Scholar
  96. Stuart, V., Field, J. G., and Newell, R. C., 1982, Evidence for the absorption of kelp detritus by the ribbed mussel, Aulocomya ater (Molina), using a new 51Cr-labelled microsphere technique, Mar.Ecol,Prog.Ser., 9:263.Google Scholar
  97. Stuart, V., Lucas, M. I., and Newell, R. C., 1981, Heterotrophic utilisation of particulate matter from the kelp Laminaria pallida, Mar.Ecol.Prog.Ser., 4:337.Google Scholar
  98. Stuart, V., Newell, R. C., and Lucas, M. I., 1982, Conversion of kelp debris and faecal material from the mussel Aulocomya ater by marine microorganisms, Mar.Ecol.Prog.Ser., 7:47.Google Scholar
  99. Suberkropp, K., and Klug, M. J., 1974, Decomposition of deciduous leaf litter in a woodland stream. 1. A scanning electron microscope study, Microb.Ecol., 1:96.Google Scholar
  100. Suberkropp, K., and Klug, M. J., 1976, Fungi and bacteria associated with leaves during processing in a woodland stream, Ecology, 57:707.Google Scholar
  101. Teal, J. M., 1962, Energy flow in the salt marsh ecosystem of Georgia, Ecology, 43:614.Google Scholar
  102. Troitsky, A. S., and Sorokin, Y. I., 1967, On the methods of calculation of the bacterial biomass in water bodies, Trans.Inst.Biol. Inland Waters Acad.Sci. USSR, 19:85.Google Scholar
  103. Tunnicliffe, V., and Risk, M. J., 1977, Relationships between the bivalve Macoma balthica and bacteria in intertidal sediments: Minas Basin, Bay of Fundy, J.Mar.Res., 35:499.Google Scholar
  104. Wetzel, R. L., 1977, An experimental radio-tracer study of detrital carbon utilisation in a Georgia salt marsh, Ph.D Thesis, University of Georgia.Google Scholar
  105. Wiebe, W. J., and Smith, D. F., 1977, Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs, Mar.Biol., 42:213.Google Scholar
  106. Williams, P. L. Le.B., 1970, Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substrates, J.Mar.Biol.Ass.U.K., 50:859.Google Scholar
  107. Williams, P. J. LeB., 1973, On the question of growth yields of natural heterotrophic populations, Bull.Eco1.Res.Comm. (Stockholm), 17:400.Google Scholar
  108. Williams, P. J. LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch., 5:1.Google Scholar
  109. Wolter, K., 1982, Bacterial incorporation of organic substances released by natural phytoplankton populations, Mar.Ecol.Prog.Ser., 7:287.Google Scholar
  110. Woodwell, G. M., Whitney, D. E., Hall, C. A. S., and Houghton, R. A., 1977, The Flax Pond ecosystem study: exchanges of carbon in water between a saltmarsh and Long Island Sound, Limnol.Oceanogr., 22:833.Google Scholar
  111. Wright, R. T., and Hobbie, J. E., 1965, The uptake of organic solutes in lake water, Limnol.Oceanogr., 10:22.Google Scholar
  112. Yurkovsky, A. K., 1971, Results of fraction investigation of the organic substances in the Baltic Sea, Proc. Joint Oceanog.Assem. (Tokyo, 1970), 1971:466.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. C. Newell
    • 1
  1. 1.Institute for Marine Environmental ResearchPlymouthUK

Personalised recommendations