Skip to main content

Bacterial Production in the Marine Food Chain: The Emperor’s New Suit of Clothes?

  • Chapter
Flows of Energy and Materials in Marine Ecosystems

Part of the book series: NATO Conference Series ((MARS,volume 13))

Abstract

Writers on biological oceanography and modellers of the marine food chain have been hesitant and uncertain of the importance of bacterial processes, indeed of microbial processes in general. There are good reasons for this. Marine bacteria are most probably among the smallest free-living organisms in the biosphere. Until comparatively recently the determination of their numbers and biomass has been difficult. The measurement of bacterial activity is even more problematic, the techniques specialized and their interpretation difficult if not obscure. Thus, the acceptance by non-microbiologists that bacteria may play a significant role in the marine food chain has been, and to some extent still is, an act of faith. Understandably and probably quite rightly biological oceanographers in the past have been cautious in incorporating a significant microbial component into conceptual or other models of the pelagic food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, P., and Williams, P.J. leB., 1971, Heterotrophic utilization of organic compounds in the sea. III. Measurement of the oxidation rates and concentrations of glucose and amino acids in seawater, J. Mar. Biol. Ass. U.K., 51:111.

    Article  Google Scholar 

  • Azam, F. and Ammerman, J.W., 1982, Cycling of organic material by bacterioplankton in marine ecosystems: microenvironmental considerations, This volume.

    Google Scholar 

  • Banse, K., Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol. Oceanogr., 27: 1059.

    Google Scholar 

  • Barsdate, R.J., Prentki, R.T., and Fenchel, T., 1974, Phosphorus cycle in model ecosystems: significance for decomposer food chains and effect of bacterial grazers, Oikos, 25: 239.

    Article  Google Scholar 

  • Beers, J.R., Reid, F.M.H., and Stewart, G.L., 1975, Microplankton of the North Central Pacific Gyre. Population structure and abundance, June 1973, Int. Revue Ges. Hydrobiol., 60: 607.

    Google Scholar 

  • Billen, G., Joiris, C., Winant, J., and Gillain, G., 1980, Concentration and metabolism of small organic molecules in estuarine, coastal and open sea environments of the Southern North Sea, Est. Coastal Mar. Sci., 11: 279.

    Article  Google Scholar 

  • Calow, P., 1977, Conversion efficiencies in heterotrophic organisms, Biol. Rev., 52: 385.

    Article  Google Scholar 

  • Carlucci, A.F., and Shimp, S.L., 1974, Isolation and growth of a marine bacterium in low concentrations of substrate, in; “Effect of the ocean environment on microbial activities,” R.R. Colwell and R.Y. Morita, eds., Univ. Park Press, Baltimore.

    Google Scholar 

  • Carlucci, A.F., and Williams, P.M., 1978, Simulated in situ growth rates of pelagic marine bacteria, Naturwiss., 65: 541.

    Article  Google Scholar 

  • Crawford, C.C., Hobbie, J.E., and Webb, K.L., 1974, The utilization of dissolved free amino acids by estuarine micro-organisms, Ecology, 55:551.

    Article  Google Scholar 

  • Dewey, J.M., 1976, Rates of feeding, respiration and growth of a rotifer Branchionus plicatilis in the laboratory, Ph.D. University of Washington.

    Google Scholar 

  • Eppley, R.W., and Peterson, B.J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282:677.

    Article  Google Scholar 

  • Es, F.B. van, and Meyer-Reil, L.A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, To appear in Adv. in Microbial Ecology.

    Google Scholar 

  • Fenchel, T. 1982a Ecology of heterotrophic microflagellates. II. Bioenergetics and growth, Mar. Ecol. Prog. Ser., 8: 225.

    Article  Google Scholar 

  • Fenchel, T., 1982b, Suspended marine bacteria as a food source, This volume.

    Google Scholar 

  • Ferguson, R.L., and Palumbo, A.V., 1979, Distribution of suspended bacteria in neritic waters south of Long Island during stratified conditions, Limnol. Oceanogr., 24: 697.

    Article  Google Scholar 

  • Ferguson, R.L., and Rublee, P., 1976, Contribution of bacteria to standing crop of coastal plankton, Limnol. Oceanogr., 22:141.

    Article  Google Scholar 

  • Fuhrman, J.A., 1981, Influence of method on the apparent size distribution of bacterioplankton cells: epifluorescence microscopy compared to scanning electron microscopy, Mar. Ecol. Prog. Serv., 5: 103.

    Article  Google Scholar 

  • Fuhrman, J.A., Ammerman, J.W.A., and Azam, F., 1980, Bacterioplankton in the coastal euphotic zone; distribution activity and possible relationships with phytoplankton, Mar. Biol., 60: 201.

    Article  Google Scholar 

  • Fuhrman, J.A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California, Appl. Environ. Microbiol., 39: 1085.

    Google Scholar 

  • Fuhrman, J.A. and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results, Mar. Biol., 66:109.

    Article  Google Scholar 

  • Gocke, K., 1976, Respiration von gelosten organischen Verbindungen durch naturliche Mikroorganismen-Populationen. Ein Vergliech swischen verschiedenen Biotopen, Mar. Biol., 35: 375.

    Article  Google Scholar 

  • Goldman, J., 1982, The marine nutrient cycle, This volume.

    Google Scholar 

  • Harrison, W.G., 1980, Nutrient regeneration and primary production in the sea, in: “Primary Productivity in the Sea,” P. Falkowski ed. Plenum Press, New York.

    Google Scholar 

  • Heinbokel, J.F., 1978, Studies on the functional role of tintinnids in the Southern California Bight 1. Grazing and growth rates in laboratory cultures, Mar. Biol., 47: 177.

    Article  Google Scholar 

  • Hobbie, J.E., Daley, R.J., and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, App. Environ. Microbiol., 33: 1225.

    Google Scholar 

  • Holligan, P.M., Harris, R.P., Harbour, D.S. Head, R.N., Tranter, P.R.G., Weekley, C.M., Newell, R.C., Linley, E.A.S., and Lucas, M.I. The partitioning or organic carbon in mixed, frontal and stratified waters of the English Channel, in press.

    Google Scholar 

  • Hoppe, H. -G., 1976, Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of microautoradiography, Mar. Biol., 36: 291.

    Article  Google Scholar 

  • Iturriaga, R., and Hoppe, H.-G., 1977, Observations of heterotrophic activity on photoassimilated organic matter, Mar. Biol., 40: 100

    Article  Google Scholar 

  • Iturriaga, R., and Zsolnay, A., 1981, Transformations of some dissolved organic compounds by a natural heterotrophic population, Mar. Biol., 62: 125.

    Article  Google Scholar 

  • Jannasch, H.W., 1967, Growth of marine bacteria at limiting concentrations of organic carbon in seawater, Limnol. Oceanogr., 12: 264.

    Article  Google Scholar 

  • Joint, I.R., and Morris, R.J., 1982, The role of bacteria in the turnover of organic matter in the sea, Oceanog. Mar. Biol. Ann. Rev., 20: 65.

    Google Scholar 

  • Johannes, R.E., 1965, Influence of marine protozoa on nutrient regeneration, Limnol. Oceanogr., 10: 434.

    Article  Google Scholar 

  • Johnson, P.W., and Sieburth, J. McN., 1979, Chroccoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass, Limnol. Oceanogr., 24: 938.

    Google Scholar 

  • Jorgensen, C.B., 1983, Effect of grazing: metazoan suspension feeders, o appear in “Heterotrophy in the Sea”, J.E. Hobbie and P.J.leB. Williams, eds., Plenum Press, New York.

    Google Scholar 

  • Karl, D.M., 1979, Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis, App. Environ. Microbiol., 38: 850.

    Google Scholar 

  • Keller, M.D., Mague, T.M., Badenhausen, M., and Glover, H.E., 1982, Seasonal variations in the production and consumption of amino acids by coastal microplankton, Est. Coast. Mar. Sci., 15:301.

    Google Scholar 

  • King, K.R., Hollibaugh, J.T., and Azam, F., 1980, Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns, Mar. Biol., 56:49.

    Article  Google Scholar 

  • Liebezeit, G., Bolter, M., Brown, I.F., and Dawson, R., 1980, Dissolved free amino acids and carbohydrates at pyncocline boundaries in the Sargasso Sea and related microbial activity, Oceanol. Acta, 3:357.

    Google Scholar 

  • Newell, R.C., Lucas, M.I., and Linley, E.A.S., 1981. Rate of degeneration and efficiency of conversion of phytoplankton debris by marine micro-organisms, Mar. Ecol. Prog. Series, 6: 123.

    Article  Google Scholar 

  • Newell, S.V., and Christian, R.R., 1981, Frequency of dividing cells as an estimator of bacterial productivity, App. Environ. Microbiol. 42:23.

    Google Scholar 

  • Packard, T.T., and Williams, P.J.leB. 1981, Respiration and respiratory electron transport activity in sea surface seawater from the northeast Atlantic, Oceanol. Acta, 4:351.

    Google Scholar 

  • Parsons, T.R., Albright, L.J., Whitney, F., Wong, C.S., and Williams, P.J.leB., 1980, The effect of glucose on the productivity of seawater: an experimental approach using controlled equatic ecosystems. Mar. Environ. Res., 4:229.

    Article  Google Scholar 

  • Payne, W.T., 1970, Energy yields and growth of heterotrophs, Ann. Rev. Microbiol., 24:17.

    Article  Google Scholar 

  • Payne, W.T., and Wiebe, W.J., 1978, Growth yield and efficiency in chemosynthetic micro-organisms, Ann. Rev. Microbiol., 32:155.

    Article  Google Scholar 

  • Platt, T., Lewis, M., and Geider, R., 1983, Thermodynamics of the pelagic ecosystem: elementary closure conditions for biological production in the open ocean, this volume.

    Google Scholar 

  • Redfield, A.C., 1958, The biological control of the chemical factors in the environment, Amer. Sci., 46:205.

    Google Scholar 

  • Rublee, P., Ferguson, R.L., Palumbo, A.V., and Buckley, E., personal communication.

    Google Scholar 

  • Shulenberger, E., and Reid, J.L., 1981, The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary production, reconsidered, Deep-Sea Res., 28: 901.

    Article  Google Scholar 

  • Sieburth, J. McN., 1983, Grazing of bacteria by protozooplankton in pelagic marine waters, in: “Heterotrophy in the Sea,” J.E. Hobbie and P.J. leB. Williams, eds., Plenum, New York.

    Google Scholar 

  • Sieburth, J. McN., Johnson, K.M., Burney, C.M., and Lavoie, D.M., 1977, Estimated in situ rates of heterotrophy using diurnal change in dissolved organic matter and growth rates of picoplankton in diffusion cultures, Helgolander wiss Meeresunters. 30:565.

    Article  Google Scholar 

  • Sorokin, Y.I., 1978, Decomposition of organic matter and nutrient regeneration, in: “Marine Ecology,” Vol. IV, O. Kinne ed., Wiley Interscience, Chichester.

    Google Scholar 

  • Strickland, J.D.H., 1970, The ecology of the plankton off La Jolla, California, in the period April through September, 1967, Bull. Scripps Inst. Ocean., Volume 17.

    Google Scholar 

  • Stuart, V., Lucas, M.I., and Newell, R.C., 1981, Heterotrophic utilisation of particulate matter from the kelp Laminaria pallida, Mar. Ecol. Prog. Ser., 4: 337.

    Article  Google Scholar 

  • Vinogradov, M.Y., Krapivin, V.F., Menshutkin, V.V., Fleyshman, B.S., and Shushkina, E.A., 1973, Mathematical model of the functions of the pelagic ecosystem in tropical regions (from 50th voyage of the R/V Vityaz), Oceanology, 13: 704.

    Google Scholar 

  • Vinogradov, M.E., Menshutkin, V.V., and Shushkina, E.A., 1972, On a mathematic simulation of a pelagic ecosystem in tropical waters of the ocean, Mar. Biol., 16:261.

    Article  Google Scholar 

  • Vyshvartsev, D.I., 1980, Bacterioplankton in shallow inlets of Poyeta Bay. Microbiology, 48:603.

    Google Scholar 

  • Watson, S.W., Novitsky, T.M., Quinby, H.L., and Valois, F.W., 1977, Determination of bacterial number and biomass in marine environments, App. Environ. Microbiol., 33:940.

    Google Scholar 

  • Williams, P.J. leB., 1970, Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substances, J. Mar. Biol. Ass. U.K., 50: 859.

    Article  Google Scholar 

  • Williams, P.J. leB. 1973, On the question of growth yields of natural heterotrophic populations, in: “Modern Methods in the Study of Microbial Ecology,” T. Rosswall, ed., Bull. Ecol. Res. Comm. (Stockholm) 197. Swedish Natural Science Research Council.

    Google Scholar 

  • Williams, P.J. leB., 1981a, Microbial contribution to overall marine plankton metabolism: direct measurements of respiration, Oceanol. Acta, 4: 359.

    Google Scholar 

  • Williams, P.J.leB., 1981b, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, 15th European Symposium on Marine Biology, Kiel F.G.R. Kieler Meereforsch, 5: 1.

    Google Scholar 

  • Williams, P.J. leB., 1982, Microbial contribution to overall plankton community respiration — studies in CEE’s in: “Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems,” G.D. Grice and H.R. Reeve, eds., Springer-Verlay, Berlin.

    Google Scholar 

  • Williams, P.J. leB., 1983, A review of measurements of respiration rates of marine plankton communities, in: “Heterotrophy in the Sea,” J.E. Hobbie, and P.J. leB. Williams, eds., Plenum Press, New York.

    Google Scholar 

  • Williams, P.J. leB., Berman, T. and Holm-Hansen, O., 1976, Amino acid uptake and respiration by marine heterotrophs, Mar. Biol. 35: 41.

    Article  Google Scholar 

  • Williams, P.J. leB. and Yentsch, C.S., 1976, An examination of phytosynthetic production, excretion of photosynthetic products, and heterotrophic utilization of dissolved organic compounds with reference to results from a coastal subtropical sea, Mar. Biol., 35: 31.

    Article  Google Scholar 

  • Williams, P.M., Carlucci, A.F., and Olson, R., 1980, A deep profile of some biologically important properties in the central North Pacific gyre, Oceanol. Acta, 3: 471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Williams, P.J.l. (1984). Bacterial Production in the Marine Food Chain: The Emperor’s New Suit of Clothes?. In: Fasham, M.J.R. (eds) Flows of Energy and Materials in Marine Ecosystems. NATO Conference Series, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0387-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0387-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0389-4

  • Online ISBN: 978-1-4757-0387-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics