Advertisement

The Measurement of the Enthalpy of Metabolism in Marine Organisms

  • Pierre Lasserre
Part of the NATO Conference Series book series (NATOCS, volume 13)

Abstract

In marine ecosystems the high variety of species-specific patterns of populations living under aerobic and low oxygen conditions, is a very complex indicator of firstly, the biochemical analyses of the level and time evolution of metabolism and, secondly, the energetic activity of populations within a given ecosystem.

Keywords

Marine Organism Heat Production Heat Dissipation Indirect Calorimetry Direct Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beezer, A.E., ed., 1980 “Biochemical calorimetry,” Academic Press, London.Google Scholar
  2. Boling, E.A., Blanchard, G.C., and Rüssel, W.J., 1973, Bacterialidentification by microcalorimetry, Nature (London), 241: 472.CrossRefGoogle Scholar
  3. Calvet, E. and Prat, H., 1963, “Recent progress in microcalorimetry,” Pergamon Press, Oxford.Google Scholar
  4. Castell, C., Wagensberg, J., Tejero, A. and Vallespinos, F., 1981, Identificacion de las fases metabolicas en termogramsas de cultivos bacterianos, Inv. Pesq., 45: 291.Google Scholar
  5. Crisp, D., 1971, Energy flow measurements, In: “Methods for the study of marine benthos,” eds. N.A. Holme and A.D. McIntyre, Blackwell Scientific, Oxford.Google Scholar
  6. Dessers, A., Chiang, C., Landelot, H., 1970, Calorimetric determination of free efficiency in Nitrobacter winogradskyi, J. gen. Microbiol., 64: 71.Google Scholar
  7. Glansdorff, P. and Prigogine, I., 1971, “Thermodynamic theory of structure, stability and fluctuation,” Wiley, New York.Google Scholar
  8. Gnaiger, E., 1979, Direct calorimetry in ecological energetics. Long term monitoring of aquatic animals, Experientia, Suppl. 27: 155.Google Scholar
  9. Gnaiger, E., 1980, Energetics of invertebrate anoxibiosis: direct calorimetry in aquatic oligochaetes, FEBS Letters, 112: 239.CrossRefGoogle Scholar
  10. Lamprecht, I., and Zotin A.I., ed., 1978, “Thermodynamics of biological processes,” Walter de Gruyter, Berlin and New York.Google Scholar
  11. Lasserre, P., 1976, Metabolic activities of benthic microfauna and meiofaunca, In: “The Benthic Boundary Layer,” ed. I.N. McCave, Plenum Press, New York.Google Scholar
  12. Lasserre, P., 1980, Energetic role of meiofauna and epifaunal deposit-feeders in increasing level of microbial activity in estuarine ecosystems, at the water-sediment interface, In: “Biogéochimie de la matière organique à l’interface eau-sédiment marin,” ed. R. Daumas, Actes Colloq Int. CNRS, Paris, 293: 309.Google Scholar
  13. Lasserre, P. and Tournié, T., Use of microcalorimetry for the characterization of marine metabolic activity, at the water-sediment interface, Submitted to Oikos.Google Scholar
  14. Lavoisier, A., and Laplace, P., 1780, Memoir on heat, Reprinted in “Great experiments in biology,” ed. M.L. Gabriel and S. Fogel, (1955), Printice-Hall, New Jersey.Google Scholar
  15. Ljungholm, K., Norén, B., Sköld, R., and Wadsö, I., 1979 a, Use of microcalorimetry for the characterization of microbial activity in soils, Oikos, 33: 15.CrossRefGoogle Scholar
  16. Ljungholm, K., Norén, B., and Wadsö, I., 1979 b, Microcalorimetric observations of microbial activity in normal and acidified soils, Oikos, 33: 24.CrossRefGoogle Scholar
  17. Lurié, D., and Wagensberg, J., 1979, Non-equilibrium thermodynamics and biological growth and development, J. Theor. Biol., 78: 241.CrossRefGoogle Scholar
  18. Mann, K.H., and Smith D.F., 1981, Physiological rates and ecological fluxes, In: “Mathematical models in biological oceanography,” T. Platt, K.H. Mann and R.E. Ulanowicz, The Unesco Press, Paris.Google Scholar
  19. Mann, K.H., 1969, Dynamics of aquatic ecosystems, Ad. Ecol. Res., 6: 1.CrossRefGoogle Scholar
  20. Margalef, R., 1968m “Perspectives in ecological theory,” Univ. Chicago Press, Chicago.Google Scholar
  21. Margalef, R., 1980, “La Biosfera, entre la termodinamica y el juego,” Ediciones Omega, Barcelona.Google Scholar
  22. Monk, P., and Wadsö, I., 1975, The use of microcalorimetry for bacterial classification, J. Appl. Bact. 38: 71.CrossRefGoogle Scholar
  23. Odum, H.T., and Pinkerton, R.C., 1955, Time’s speed regulator: the optimum efficiency for maximum power output in physical and biological systems, Am. Sci., 43: 331.Google Scholar
  24. Pamatmat, M.M., 1975, In situ metabolism of benthic communities, Cah. Biol. Mar., 16: 613.Google Scholar
  25. Pamatmat, M.M., 1978, Oxygen uptake and heat production in a metabolic conformer (Littorina irrorata) and a metabolic regulator (Uca pugnax), Mar. Biol. 48: 317.CrossRefGoogle Scholar
  26. Pamatmat, M.M., 1980, The annual mineralization of organic matter in sediments. Present knowledge, persistent technical problems and uncertainties in our measurements, In: “Biogéochimie de la matière organique à l’interface eau-sédiment marin,” R. Daumas, ed., Actes Colloq. Int. CNRS, Paris, 393: 309.Google Scholar
  27. Patten, B., 1959m An introduction to the cybernetics of the ecosystem trophicdynamic aspect, Ecology, 40: 221.CrossRefGoogle Scholar
  28. Platt, T., 1981, Ecological application of irreversible thermodynamics, In: “Mathematical models in biological oceanography,” T. Platt, K.H. Mann and R.E. Ulanowicz, eds., The Unesco Press, Paris.Google Scholar
  29. Prigogine, I., 1967, “Introduction of thermodynamics of irreversible processes,” 3rd ed., Wiley, New York.Google Scholar
  30. Schrödinger, E., 1944, “What is life?,” Cambridge University Press, New York.Google Scholar
  31. Slobodkin, L.B., 1962, Energy in animal ecology, In: “Advances in ecological research,” vol. 1, J.N. Cragg, ed., Academic Press, London and New York.Google Scholar
  32. Spink, C., and Wadsö, I., 1976, Calorimetry as an analytical tool in biochemistry and biology, In: “Methods of biochemical analyses” vol. 23, D. Glick, ed., Wiley, New York.Google Scholar
  33. Tournié, T., 1981, Contribution à l’étude microcalorimétrique de l’activité biologique d’interfaces eau-sédiment en milieu marin, Thèse 3ème cycle, Université de Bordeaux I, France, (unpublished thesis).Google Scholar
  34. Tournié, T. and Lasserre, P., in preparation, Microcalorimetric characterization of seasonal metabolic trends in marine microcosms, Submitted to Oikos.Google Scholar
  35. Ulanowicz, R.E., 1981, Information theory applied to acosystem structure. In: “Mathematical models in biological oceanography,” T. Platt, K.H. Mann and R.E. Ulanowicz, eds., The Unesco Press, Paris.Google Scholar
  36. Vernberg, F.J., and Vernberg, W.B., eds., 1981, “Functional adaptations of marine organisms,” Academic Press, New York.Google Scholar
  37. Wadsö, I., 1974, A microcalorimeter for biological analyses, Science Tools, 21: 18.Google Scholar
  38. Wagensberg, J., Castell, C., Torra, V., Rodellar, J., and Vallespinos, F., 1978, Estudio microcalorimétrico del metabolismo de bacterias marinas: deteccion de procesos ritmicos, Inv. Pesq., 42:172.Google Scholar
  39. Wiegert, R.G., 1968, Thermodynamic considerations in animal nutrition, Amer. Zool., 8: 71.Google Scholar
  40. Zotin, A.I., 1972, “Thermodynamic aspects of developmental biology,” Karger, Basel.Google Scholar
  41. Zotin, A.I., Konoplev, V.A., and Grudnitzky, V.A., 1978, The questions of non-linearity for using criterion of ordeliness, In: “Thermodynamics of biological processes,” I. Lamprecht and A.I. Zotin, Water de Gruyter, Berlin and New York.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Pierre Lasserre
    • 1
    • 2
  1. 1.Institute of Marine BiologyUniversity of Bordeaux IArcachonFrance
  2. 2.Station D’Oceanologie Et De Biologie Marine University of Paris VI & C.N.R.S. (LP4601)RoscoffFrance

Personalised recommendations