Excitotoxins pp 112-121 | Cite as

Kainic Acid: Insights into Its Receptor-Mediated Neurotoxic Mechanisms

  • J. T. Coyle
  • J. Ferkany
  • R. Zaczek
  • J. Slevin
  • K. Retz
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)


Historically, kainic acid (KA) was selected as a potential exitotoxin because the evidence at the time was consistent with the notion that, as a conformationally restricted analogue of L-glutamate, it was a potent agonist at glutamate receptors (Olney et at., 1974; Coyle and Schwarcz, 1976). Since the first reports of the perikaryal-specific neurotoxic action of intracerebrally injected KA, it has become increasingly apparent that the mechanism of its neurotoxic effects is complex. Consequently, it has been our strategy for clarifying the mechanism of neurotoxicity of KA to focus on receptor specific interactions of the drug. We have felt that this approach might lead to a better understanding of the proximate physiologic events that result in perikaryal-specific neuronal degeneration. Furthermore, the effects of KA might be distinguished from other receptor-specific excitatory amino acid analogues (Watkins and Evans, 1981) such as N-methyl-D-aspartic acid (NMDA) and quisqualic acid as well as more generalized consequences of excessive stimulation of the broad class of the acidic amino acid receptors. These studies have provided evidence of the unique physiologic, pharmacologic and toxicologic properties associated with activation of receptors for KA.


Excitatory Amino Acid Kainie Acid Domoic Acid Ibotenic Acid Cerebellar Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biscoe, T.J., Evans, R.H., Headley, P.M., Martin, M.R. and Watkins, J.C. (1976). Br. J. Pharmacol., 58, 373–382.PubMedCrossRefGoogle Scholar
  2. Biziere, K. and Coyle, J.T. (1978a). J. Neurochem., 31, 513–520.PubMedCrossRefGoogle Scholar
  3. Biziere, K. and Coyle, J.T. (1978b). Neurosci. Lett., 8, 303–310.PubMedCrossRefGoogle Scholar
  4. Biziere, K. and Coyle, J.T. (1979a). Neuropharmacology, 18, 409–413.PubMedCrossRefGoogle Scholar
  5. Biziere, K. and Coyle, J.T. (1979b). J. Neurosci. Res., 4, 383–398.PubMedCrossRefGoogle Scholar
  6. Campochiaro, P. and Coyle, J.T. (1978). Proc. Natl. Acad. Sci. USA, 75, 2025–2029.PubMedCrossRefGoogle Scholar
  7. Coyle, J.T. and Schwarcz, R. (1976). Nature, 263, 244–246.PubMedCrossRefGoogle Scholar
  8. Coyle, J.T., Molliver, M.E. and Kuhar, M.J. (1978). J. Comp. Neurol., 180, 301–324.PubMedCrossRefGoogle Scholar
  9. Curtis, D. and Johnston, G.A.R. (1974). Eben Physiol. 69, 97–188.Google Scholar
  10. Duffy, T.E., Nelson, S.R. and Lowry, O.H. (1972) J. Neurochem., 19, 959–977.PubMedCrossRefGoogle Scholar
  11. Ferkany, J. W., Slevin, J.T., Zaczek, R. and Coyle, J.T. Neurobehavioral Toxicology, in press.Google Scholar
  12. Ferkany, J.W., Zaczek, R. and Coyle, J.T. (1982) Nature, 298, 757–759.PubMedCrossRefGoogle Scholar
  13. Hill, D.W., Walters, F.H., Wilson, T.D. and Stuart, J.D. (1979). Anal. Chem., 51 1338–1341.PubMedCrossRefGoogle Scholar
  14. Krespan, B., Berl, S. and Nicklas, W.J. (1982). J. Neurochem., 38, 509–518.PubMedCrossRefGoogle Scholar
  15. London, E.D. and Coyle, J.T. (1979a). Mol. Pharmacol., 15, 492–505.PubMedGoogle Scholar
  16. London, E.D. and Coyle, J.T. (1979b). Eur. J. Pharmacol., 56, 287–290.PubMedCrossRefGoogle Scholar
  17. London, E.D., Klemm, N. and Coyle, J.T. (1980). Brain Res., 192, 463–476.PubMedCrossRefGoogle Scholar
  18. McGeer, E.G., McGeer, P.H. and Singh, K. (1978). Brain Res. 139, 381–383.PubMedCrossRefGoogle Scholar
  19. McLennan, H. (1980) Neurosci. Letts., 18, 313–316.CrossRefGoogle Scholar
  20. Olney, J.W., Ho, O.L. and Rhee, V. (1971) Exp. Brain Res., 14, 61–70.PubMedCrossRefGoogle Scholar
  21. Olney, J.W., Rhee, V. and Ho., O.L. (1974) Brain Res., 77, 507–512.PubMedCrossRefGoogle Scholar
  22. Retz, K.C. and Coyle, J.T. (1982) J. Neurochem., 38, 196–203.PubMedCrossRefGoogle Scholar
  23. Retz, K.C, Young, A.C. and Coyle, J.T. (1982). European Journal of Pharmacology, 79, 319–322.PubMedCrossRefGoogle Scholar
  24. Ruck, A., Kramer, S., Metz, J. and Brennan, M.J.W. (1980). Nature, 287, 852–853.PubMedCrossRefGoogle Scholar
  25. Sacktor, B., Wilson, J.E. and Tiekert, C.G. (1966) J. Biol. Chem., 241, 5071–5075.PubMedGoogle Scholar
  26. Salpeter, M.M., Kasprzak, H., Fong, H. and Fertuck, H. (1979) J. Neurocytol., 8, 95–115.PubMedCrossRefGoogle Scholar
  27. Schwarcz, R. and Coyle, J.T. (1977). Brain Res., 127, 235–247.PubMedCrossRefGoogle Scholar
  28. Schwarcz, R., Scholz, D. and Coyle, J.T. (1978). Neuropharmacology, 17, 145–151.PubMedCrossRefGoogle Scholar
  29. Simon, J.R., Contrera, J.F. and Kuhar, M.J. (1976). J. Neurochem., 26, 141–147PubMedGoogle Scholar
  30. Slevin, J., Collins, J., Lindsley, K. and Coyle, J.T. Brain Res., in press.Google Scholar
  31. Slevin, J.T. and Coyle, J.T. (1981). J. Neurochem., 37, 531–533.PubMedCrossRefGoogle Scholar
  32. Slevin, J.T., Johnston, M.V., Biziere, K. and Coyle, J.T. (1982). Developmental Neuroscience, 5, 3–12.PubMedCrossRefGoogle Scholar
  33. Svedes, J.S., Sedo, R.J. and Atkinson, D.E. (1975) J. Biol. Chem., 250, 6930–6938.Google Scholar
  34. Watkins, J.C. and Evans, R.H. (1981). Ann. Rev. Pharmacol., 21, 165–204.CrossRefGoogle Scholar
  35. Wikilund, L., Toggenburgen, G. and Cuenod, M. (1982). Science, 216, 78–80.CrossRefGoogle Scholar
  36. Wooten, G.F. and Collins, R. (1980) Brain Res., 201, 173–184.PubMedCrossRefGoogle Scholar
  37. Zaczek, R. and Coyle, J.T. (1982). Neuropharmacology, 21, 15–26.PubMedCrossRefGoogle Scholar
  38. Zaczek, R., Simonton, S. and Coyle, J.T. (1980) J. Neuropathol. Exp. Neurol., 39, 245–264.PubMedCrossRefGoogle Scholar

Copyright information

© The Wenner-Gren Center 1983

Authors and Affiliations

  • J. T. Coyle
    • 1
  • J. Ferkany
    • 1
  • R. Zaczek
    • 1
  • J. Slevin
    • 1
  • K. Retz
    • 1
  1. 1.Division of Child Psychiatry, Departments of Psychiatry, Neuroscience Pharmacology and PædiatricsJohns Hopkins University, School of MedicineBaltimoreUSA

Personalised recommendations