Polarization and Nonlinear Propagation in Single-Mode Fibres

  • B. Crosignani
  • B. Daino
Part of the Ettore Majorana International Science Series book series (EMISS, volume 35)


A monochromatic electromagnetic field inside a straight real lossless single-mode fiber (see Fig. 1) can be written, in full generality, as a superposition of two linearly polarized orthogonal modes in the form
$$\begin{gathered} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{E} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{x} \varepsilon (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r} ){A_x}(z)\exp (i(\omega t - {\beta _x}z)) + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{y} \varepsilon (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r} ){A_y}(z)\exp (i(\omega t - {\beta _y}z)) \hfill \\ \quad = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{x} \varepsilon (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r} ){a_x}(z)\exp (i\omega t) + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{y} \varepsilon (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{r} ){a_y}(z)\exp (i\omega t) \hfill \\ \end{gathered} $$
where ε(r) is the spatial configuration of the mode.


Chromatic Dispersion Envelope Soliton Optical Kerr Effect Polarization Instability Birefringent Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Born and E. Wolf, “Principles of Optics”, 4th ed., Pergamon, Oxford (1970)Google Scholar
  2. 2.
    R. Ulrich and A. Simon, Polarization optics of twisted single-mode fibers, Appl. Opt. 18, 2241 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    D. N. Payne, A. J. Barlow and J. J. Ramskov-Hansen, Development of low-and high-birefringence optical fibers , IEEE J. Quantum Elect. QE-18, 447 (1982)ADSGoogle Scholar
  4. 4.
    B. Crosignani, B. Daino and P. Di Porto, Depolarization of light due to the optical Kerr effect in low-birefringence single-mode fibers, J. Opt. Soc. Am., B3, 1120 (1986)ADSGoogle Scholar
  5. 5.
    B. Daino, G. Gregori and S. Wabnitz, New all-optical devices based and third-order nonlinearity of birefringent fibers, Opt. Lett. 11, 42 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    N. J. Doran and K. J. Blow, Solitons in optical communications, IEEE J. Quantum Electr., QE-19, 1883 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • B. Crosignani
    • 1
  • B. Daino
    • 1
  1. 1.Fondazione Ugo BordoniRomaItaly

Personalised recommendations