Advertisement

Digital Logic Elements for Optical Computing

  • F. A. P. Tooley
Part of the Ettore Majorana International Science Series book series (EMISS, volume 35)

Abstract

Recently the field of optical computing has grown to encompass a new group of workers who are investigating the applications of digital optics. The foundation of this subject is a property that a broad range of material posses — optical bistability. The primary concern of this paper is the prospects for the use of arrays of optically bistable devices in optical computing. The aim of this work is to provide details of the necessary requirements of a digital logic element if it is to be suitable for inclusion in an optical computing system.

Keywords

Logic Gate Optical Bistability Optical Computing Small Spot Size Large Spot Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. E. Bell, Optical Computing: A Field in Flux, IEEE Spectrum, 23: 34 (1986)ADSGoogle Scholar
  2. 2.
    A. Huang, Architectural Consideration Evolved in the Design of an Optical Digital Computer, Proc. IEEE, 72:780 (1984)CrossRefGoogle Scholar
  3. 3.
    “Technical Digests”, OSA Topical Meetings on Optical Computing (1985–1987)Google Scholar
  4. 4.
    A. W. Lohmann, What Classical Optics can do for the Digital Optical Computer, Appl. Opt., 25:1543 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    Y. S. Abu-Mostafa and D. Psaltis, Optical Neural Computers, Scientific American, 256:3,66 (1987)CrossRefGoogle Scholar
  6. 6.
    K. H. Brenner, A. Huang and N. Streibl, Digital Optical Computing with Symbolic Substitution, Appl. Opt., 25:3054 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    M. J. Murdocca, Digital Optical Computing with One-Rule Cellular Automata, Appl. Opt., 26:682 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    A. K. Kar, C. R. Paton, F. A. P. Tooley and A. C. Walker, “General Review of Optically Bistable Switching Devices”, First interim report for Project 1019 by Heriot-Watt University (1986)Google Scholar
  9. 9.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard and W. Wiegmann, Quantum Well Self-Electro-Optic Effect Device: Optoelectronic Bistability and Oscillation and Self-Linearised Modulation, IEEE J. Quant. Elect., QE-21:1462 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    P. Wheatley, P. J. Bradley, M. Whitehead, G. Parry, J. E. Midwinter, D. Mistry, M. A. Paste and J. S. Roberts, Novel Nonresonant Optoelectronic Logic Device, Elect. Lett., 23:2,7 (1987)CrossRefGoogle Scholar
  11. 11.
    A. C. Walker, Reflection Bistable Etalons with Absorbed Transmission, Opt. Commun., 59:145 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    B.S. Wherrett, Fabry-Perot Bistable Cavity Optimisation — On Reflection, IEEE J. Quant. Elect., QE-20:646 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    B. S. Wherrett, D. Hutchings and D. Russel, Optically Bistable Interference Filters: Optimisation Considerations, J. Opt. Soc. Am. B, 3:351 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    B. S. Wherrett, Semiconductor Optical Bistability: Toward the Optical Computer, in: “Nonlinear Optics: Materials and Devices”, C. Flytzanis and J. L. Oudar, eds., Springer-Verlag, Berlin (1986)Google Scholar
  15. 15.
    F. V. Karpushko and G. V. Sinitsyn, The Anomalous Nonlinearity and Optical Bistability in Thin-Film Interference Structures, Appl. Phys. B, 28:137 (1982)Google Scholar
  16. 16.
    S. D. Smith, A. C. Walker, F. A. P. Tooley and B. S. Wherrett, The Demonstration of Restoring Digital Optical Logic, Nature, 325: 6099 (1987)Google Scholar
  17. 17.
    J. Y. Bigot, A. Daunois, R. Leonelli, M. Sence, J. G. H. Mathew, S. D. Smith and A. C. Walker, Appl. Phys. Lett., 49:844 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    M. T. Tsao, L. Wang; R. Jin, R. W. Sprague, G. Gigioli, H. M. Kulche, Y. D. Li, H. M. Chou, H. M. Gibbs and N. Peyghambarian, Simbolic Substitution using ZnS Interference Filters, Opt. Eng., 26:41 (1987)Google Scholar
  19. 19.
    D. C. Hutchings, A. D. Lloyd, I. Janossy and B. S. Wherrett, Theory of Optical Bistability in Metal Mirrored Fabry-Perot Cavities Containing Thermo-Optic Materials, Opt. Comm., 61:345 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    D. J. Hagan, H. A. MacKenzie, J. J. E. Reid, A. C. Walker and F. A. P. Tooley, Spot Size Dependence of Switching Power for an Optically Bistable InSb Element, Appl. Phys. Lett., 47:203 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    A. Yariv, “ Introduction to Optical Electronics”, Holt, Rinehart and Winston, New York (1976)Google Scholar
  22. 22.
    R. Atherton, N. K. Reay, J. Ring and T. R. Hicks, Tunable Fabry-Perot Filters, Opt. Eng., 20:806 (1981)ADSGoogle Scholar
  23. 23.
    J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard and J. H. English, GaAs-A1As Monolithic Microresonator Arrays, Paper PDP1 at the OSA Topical Meeting on Photonic Switching, Lake Tahoe, March 1987Google Scholar
  24. 24.
    I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh and S. D. Smith, Dynamics of Thermally Induced Optical Bistability, IEEE J. Quant. Elect., QE-22:2224 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. MacLeod and F. Van Miliigen, Microsecond Room-Temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers, Appl. Phys. Lett., 45:1031 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    S. S. Tarng, T. Venkatesan and W. Wiegman, Use of a Diode Laser to Observe Room-Temperature, Low-Power Optically Bistability in a GaAs-AlGaAs Etalon, Appl. Phys. Lett., 44:360 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    M. J. Adams, H. J. Westlake, M. J. O’Mahony and I. D. Henning, A Comparison of Active and Passive Optical Bistability in Semiconductors, IEEE J. Quant. Elect., QE-21:1948 (1984)Google Scholar
  28. 28.
    F. A. P. Tooley, Fan-Out Considerations of Digital Optical Circuits, Appl. Opt., May 1987Google Scholar
  29. 29.
    N. C. Craft and S. D. Smith, Highly Cascadable Optically Bistable Device for Large Fan-Out Optical Computing Applications, Paper TaC3 in Technical Digest of the OSA Topical Meeting of Optical Computing, Lake Tahoe, March 1987.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • F. A. P. Tooley
    • 1
  1. 1.Department of PhysicsHeriot-Watt UniversityEdinburghUK

Personalised recommendations