Advertisement

Application of Laser Cooling to the Atomic Frequency Standards

  • F. Strumia
Part of the Ettore Majorana International Science Series book series (EMISS, volume 35)

Abstract

The Atomic Frequency Standards (AFS) are the most precise devices ever built and have many important applications both in science and technology. In fact the development of more and more precise time/frequency standards has been stimulated and supported by the need of any civilization to improve the timekeeping and the navigation systems. The present sophisticated navigation systems are based on a set of spaceborne AFS. As a consequence several countries (USA, Canada, FRG, France, UK, Italy, URSS, Japan and China) support metrological national laboratories dedicated to the maintaining and development of time and frequency standards.

Keywords

Atomic Beam Laser Cool Allan Variance Metastable Atom Reference Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bava, A. Godone, G. D. Rovera, Infrared Phys., 23, 157:160, (1983)ADSGoogle Scholar
  2. 2.
    F. Strumia, Metrología, 8, 85:90 (1972)ADSGoogle Scholar
  3. 3.
    C. Audoin, The Cs Beam frequency standard etc., in: “Metrology and Fundamental Constants”, A. Ferro Milone, P. Giacomo, and S. Leschiutta eds., North-Holland 1980, 169:259Google Scholar
  4. 4.
    L. Lewis, Prog. Quant. Electr., 8, 153 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    S. R. Stein, Prog. Quant. Electr., 8, 129 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    N. F. Ramsey, “Molecular Beams”, Oxford University Press, (1956) and (1985)Google Scholar
  7. 7.
    F. L. Walls, A. De Marchi, IEEE Trans. Instrum. Meas., IM-24, 210:217 (1975)Google Scholar
  8. 8.
    A. Godone, A. De Marchi, E. Bava, “Proc. 33rd Ann. Symp. Freq. Control” Atlantic City, N.J., 498:503 (1979)Google Scholar
  9. 9.
    S. R. Stein, A. S. Risley, H. Van de Stadt, F. Strumia, Appl. Opt., 16, 1893:1896 (1977)ADSGoogle Scholar
  10. 10.
    A. De Marchi, A. Godone, E. Bava, IEEE Trans. Instrum. Meas., IM-30, 132:138 (1981)Google Scholar
  11. 11.
    G. Giusfredi, P. Minguzzi, F. Strumia, M. Tonelli, Z. Physik, A274, 279:287 (1975)ADSGoogle Scholar
  12. 12.
    A. De Marchi, E. Bava, A. Godone, G. Giusfredi, IEEE Trans. Instrum. Meas., IM-32, 191:197 (1983)Google Scholar
  13. 13.
    G. Kramer, J. Opt. Soc. Am., 68, 1634 (1978)ADSGoogle Scholar
  14. 14.
    A. Godone, A. De Marchi, G. D. Rovera, E. Bava, G. Giusfredi, Phys. Rev., 28, 2562:2564 (1983)Google Scholar
  15. 15.
    E. Bava, A. Godone, A. De Marchi, G. D. Rovera, G. Giusfredi, Opt. Commun., 47, 193:195 (1983)ADSGoogle Scholar
  16. 16.
    A. Godone, E. Bava, G. Giusfredi, Z. Physik, A318, 131:134 (1984)ADSGoogle Scholar
  17. 17.
    A. Godone, E. Bava, A. De Marchi, G. D. Rovera, G. Giusfredi, IEEE Trans. Instrum. Meas., IM-34, 129:132 (1985)Google Scholar
  18. 18.
    A. Godone, E. Bava, G. Giusfredi, C. Novero, Yuzhu Wang, Opt. Commun., 59, 263:265 (1983) E. Bava, A. Godone, G. Giusfredi, C. Novero, “Metrologia”, in pressGoogle Scholar
  19. 18a.
    E. Bava, A. Godone, G. Rietto, Appl. Phys., B41, 187:196 (1986)ADSGoogle Scholar
  20. 19.
    E. Bava, A. Godone, Private CommunicationGoogle Scholar
  21. 20.
    A. G. Mungall, H. Daams, J. S. Boulanger, IEEE Trans. Instrum. Meas., IM-29, 291:297 (1980), andADSGoogle Scholar
  22. 20a.
    A. G. Mungall, H. Daams, J. S. Boulanger, Metrologia, 17, 123:145 (1981)Google Scholar
  23. 20b.
    A.G. Mungall, C. C. Constain, IEEE Trans. Instrum. Meas., IM-32, 224:227 (1983)Google Scholar
  24. 21.
    N. Beverini, F. Strumia, Quaderni della Scuola Normale Superiore, Volume in honour of Adriano Gozzini, 361:173, Pisa 1987Google Scholar
  25. 22.
    E. Bava, A. De Marchi, A. Godone, Lett. Nuovo Cimento, 38, 107:110 (1983)ADSGoogle Scholar
  26. 23.
    R. Frisch, Z. Physik, 86, 42 (1983)ADSCrossRefGoogle Scholar
  27. 24.
    T. W. Hänsch, A. W. Schawlow, Opt. Commun., 13, 68 (1975)ADSCrossRefGoogle Scholar
  28. 25.
    W. D. Philips, J. V. Prodan, H. J. Metcalf, J. Opt. Soc. Am., B2, 1751:1767 (1985)ADSGoogle Scholar
  29. 25a.
    W. D. Philips, Ann. Phys. Fr., 10, 717:732 (1985)Google Scholar
  30. 26.
    V. I. Balykin, V. S. Letokhov, A. I. Sidorov, Opt. Commun., 49, 248 (1984) andADSCrossRefGoogle Scholar
  31. 26a.
    V. I. Balykin, V. S. Letokhov, A. I. Sidorov, Zh. Eksp. Teor. Fiz., 86, 2019 (1984)Google Scholar
  32. 27.
    V. S. Letokhov, V. G. Minogin, B. D. Pavlik, Opt. Commun., 19, 72 (1976)ADSCrossRefGoogle Scholar
  33. 28.
    W. Ertmer, R. Blatt, J. Hall, M. Zhu, Phys. Rev. Lett., 54, 996 (1985)ADSCrossRefGoogle Scholar
  34. 29.
    R. N. Watts, C. E. Wieman, Opt. Lett., 11, 291 (1986)ADSCrossRefGoogle Scholar
  35. 30.
    W. D. Philips, J. V. Prodan, H. J. Metcalf, A. Migdall, I. So, J. Dalibard, Phys. Rev. Lett., 54, 992 (1985)ADSCrossRefGoogle Scholar
  36. 31.
    V. I. Balykin, V. S. Letokhov, V. G. Minogin, T. V. Zueva, Appl. Phys., B35, 149:153 (1986)Google Scholar
  37. 32.
    V. I. Balykin, V. S. Letokhov, A. I. Sidorov, Pis’ma Zh. Eksp. Teor. Fiz., 40, 251 (1984)Google Scholar
  38. 32a.
    V.I. Balykin, V.S. Letokhov, V. G. Minogin, Yu. V. Rozhdestvensky, A. I. Sidorov, J. Opt. Soc. Am., B2, 1776 (1985)ADSGoogle Scholar
  39. 33.
    V. G. Minogin, Opt. Lett., 10, 179 (1985)ADSCrossRefGoogle Scholar
  40. 33a.
    V. S. Letokhov, V. G. Minogin, Phys. Rep. 73, 1 (1981)ADSCrossRefGoogle Scholar
  41. 34.
    V. S. Letokhov, Comm. At. Mol. Phys., 19, 119 (1987)Google Scholar
  42. 35.
    E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electr., QE23, 455:457 (1987)ADSGoogle Scholar
  43. 36.
    W. Williams, S. Trajmar, J. Phys.B, 11, 2021:2029 (1978)ADSGoogle Scholar
  44. 37.
    V. M. Klimkin, S. S. Monastyrev, V. E. Prokopev, JETP Lett., 20, 110, (1974)ADSGoogle Scholar
  45. 37a.
    V. M. Klimkin, P. D. Kolbycheva, Sov. J. Quant. Electr., 7, 1037 (1978)ADSCrossRefGoogle Scholar
  46. 38.
    P. Hafner, W. H. E. Schwarz, J. Phys. B, 11, 2975 (1978)ADSCrossRefGoogle Scholar
  47. 38a.
    R. N. Diffenderfer, P. J. Dagdigian, D. R. Yarkony, J. Phys. B, 14, 21 (1981)ADSCrossRefGoogle Scholar
  48. 38b.
    C. W. Bauschlicher, S. R. Langhoff, H. Partridge, J. Phys. B, 18, 1523 (1985)ADSCrossRefGoogle Scholar
  49. 38c.
    K. Fukuda, K. Ueda, J. Phys. Chem., 86, 676 (1982)CrossRefGoogle Scholar
  50. 38d.
    S. K. Peck, Optics Commun., 54, 12 (1985)ADSCrossRefGoogle Scholar
  51. 39.
    L. Pasternak, D. M. Silver, D. R. Yarkony, P. J. Dagdigian, J. Phys. B, 13, 2231, 1523 (1980)Google Scholar
  52. 40.
    R. L. Hunter, W. A. Walker, D. S. Weiss, Phys. Rev. Lett., 56, 823 (1986)ADSCrossRefGoogle Scholar
  53. 41.
    C. E. Moore, “Atomic energy levels”, NSRDS-NBS 35 (1971)Google Scholar
  54. 42.
    M. Inguscio, K. R. Leopold, J. S. Murray; K. M. Evenson, J. Opt. Soc. Am., B2, 1566 (1985)ADSGoogle Scholar
  55. 43.
    D. A. Landman, A. Lurio, J. Opt. Soc. Am., 60, 986 (1970)CrossRefGoogle Scholar
  56. 44.
    W. L. Wiese, M. W. Smith, B. M. Miles, “Atomic transition probability”, vol. II, NSRDS-NBS 22 (1969)Google Scholar
  57. 45.
    N. Beverini, P. Minguzzi, F. Strumia, Phys. Rev., A4, 550 (1971)ADSGoogle Scholar
  58. 1.
    N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, Wangb Yu-zhi: AIP Proc. Third Int. Laser Scien. Conf., 1987, in pressGoogle Scholar
  59. 2.
    N. Ioli, A. Moretti, D. Pereira, F. Strumia: Conf. Digest XII Int. Conf. Infrared MM Waves, IEEE cat N.87CH2490–1, p.61–62 (1987)Google Scholar
  60. 3.
    L. P. Lelluch, L. R. Hunter, Phys. Rev., A36, 3490–3493, (1987)ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • F. Strumia
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di PisaPisaItaly
  2. 2.INFN Sezione di PisaCISM Unità di PisaItaly

Personalised recommendations