Non Linear Laser Plasma Interactions with Applications to Elementary Particle Acceleration

  • J. L. Bobin
Part of the Ettore Majorana International Science Series book series (EMISS, volume 35)


Since the days of Ampère, who was the first to accelerate objects using electromagnetic interaction1, many methods based on this same force have been invented to impart large energies to microscopic bodies. By this means, the fundamental laws of our Universe are investigated in detail: the larger the energy, the more basic and the more accurate are the results. The evolution of accelerators is best seen on the Livingston chart2 as recently updated3. It shows that the optimal performances of accelerators has followed an exponential growth (Fig. 1).


Plasma Wave Laser Frequency Stimulate Raman Scattering Free Electron Laser Lorentz Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.M. Ampère, “Théorie mathématique des phénomènes électrodynamiques uniquement déduite de l’expérience”, Paris (1827)Google Scholar
  2. 2.
    M. Stanley Livingston, “High Energy Accelerators”, Interscience (1954)Google Scholar
  3. 3.
    G. A. Voss, in: “The Challenge of Ultra-high Energies”, ECFA-RAL Oxford (1982)Google Scholar
  4. 4.
    E. Eichen, I. Hinchlife, K. Lane. C. Quigg, Rev. Mod. Phys.,56:579 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    U. Amaldi, Workshop on Advanced Accelerator Concepts, Madison, August 1986, to appear as A.I.P. Proceedings.Google Scholar
  6. 6.
    B. Richter, in: “Laser Acceleration of Particles”, A.I.P. Proceedings n. 130 (1985)Google Scholar
  7. 7.
    U. Amaldi, Nucl. Inst. Met. A243:312 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    T. Tjima and J. M. Dawson, Phys. Rev. Lett., 43:267 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    T. Katsouleas and J. M. Dawson, Phys. Rev. Lett., 51:392 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    R. Sugihara, S. Takeuchi, K. Sakai, M. Matsumoto, Phys. Rev. Lett., 52:1500 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    A. Bambini, A. Renieri, Lett. Nuovo Cimento, 21:239 (1978)CrossRefGoogle Scholar
  12. 12.
    J. M. Manley, H. E. Rowe, Proc. I.R.E. 47:2115 (1959)Google Scholar
  13. 13.
    R. Bingham, C. N. Lashmore-Davies, Nucl. Fusion, 16:67 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    C. S. Liu, M. N. Rosebbluth, R. White, Phys. Fluids, 16:1211 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    B. I. Cohen, A. N. Kaufman, K. M. Watson, Phys. Rev. Lett., 29:581 (1972)ADSCrossRefGoogle Scholar
  16. 16.
    S. J. Karttune and R. R. E. Salomaa, Phys. Rev. Lett., 56:604 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    D. C. Montgomery, Physica, 31:693 (1965)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    M. N. Rosenbluthe C. S. Liu, Phys. Rev. Lett., 29:701 (1972)ADSCrossRefGoogle Scholar
  19. 19.
    J. T. Mendonça, J. Plasma Phys., 34:115 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    C. M. Tang, P. Sprangle and R. N. Sudan, Appl. Phys. Lett., 45:375 (1984)ADSCrossRefGoogle Scholar
  21. 20a.
    C. M. Tang, P. Sprangle and R. N. Sudan, Phys. Fluids, 28:1974 (1985)ADSMATHCrossRefGoogle Scholar
  22. 21.
    J. P. Matte, F. Martin and P. Brodeur, INRS preprint (1986)Google Scholar
  23. 22.
    J. L. Bobin, Workshop on Advanced Accelerator Concepts, Madison August 1986, to appear as A.I.P. ProceedingsGoogle Scholar
  24. 23.
    Jordan and Smith, “Nonlinar differential Equations”, Oxford (1977)Google Scholar
  25. 24.
    F. Martin and J. P. Matte, private communicationGoogle Scholar
  26. 25.
    C. Bordé, private communicationGoogle Scholar
  27. 26.
    K. Mima et al., Phys. Rev. Lett., 57:421 (1986)CrossRefGoogle Scholar
  28. 27.
    C. J. McKinstrie, D. F. Dubois, Phys. Rev. Lett., 57:2022 (1986)ADSCrossRefGoogle Scholar
  29. 28.
    J. L. Bobin, Ann. Phys. Fr., 11:593 (1986)ADSCrossRefGoogle Scholar
  30. 29.
    F. F. Chen, in: “The Phisics of Ionized Gases”, S.P.I.G. 1984, World Scientific (1985)Google Scholar
  31. 30.
    T. Tajima, Laser and Particle Beams, 3:351 (1985)ADSCrossRefGoogle Scholar
  32. 31.
    C. Joshi, T. Tajima, J. M. Dawson, H. A. Baldis, N. A. Ebrahim, Phys. Rev. Lett., 45:267 (1981)Google Scholar
  33. 32.
    B. Amini, F. F. Chen, Phys. Rev. Lett., 53:1441 (1984)ADSCrossRefGoogle Scholar
  34. 33.
    C. E. Clayton, C. Joshi, C. Darrow and D. Umstadter, Phys. Rev. Lett., 54:558 (1984)Google Scholar
  35. 34.
    F. Martin, P. Brodeur, J. P. Matte, H. Pépin and N. Ebrahim, S.P.I.E. Proc, 664:20 (1986)Google Scholar
  36. 35.
    A. E. Dangor et al., C.L.I.C. note 29, C.E.R.N. (1986)Google Scholar
  37. 36.
    F. Amiranoff, C. Labaune, private communicationGoogle Scholar
  38. 37.
    J. M. J. Mady, J. Appl. Phys., 42:1906 (1971)ADSCrossRefGoogle Scholar
  39. 38.
    V. Granastein et al., Appl. Phys. Lett., 30:384 (1977)ADSCrossRefGoogle Scholar
  40. 39.
    J. L. Bobin, Optics Comm., 55:413 (1985)ADSCrossRefGoogle Scholar
  41. 40.
    C. Pellegrini, in: “The Challenge of Ultra-high Energies”, ECFA-RAL Oxford (1982)Google Scholar
  42. 41.
    see e.g. J. Welland, H. Wilhelmsson, “Coherent Nonlinear Interaction of Waves in Plasmas”, Pergamon (1977)Google Scholar
  43. 42.
    D. Pesme et al. Phys. Rev. Lett., 31:203 (1973)ADSCrossRefGoogle Scholar
  44. 43.
    R. Bonifacio, F. Casagrande, Optics Comm., 50:251 (1984)ADSCrossRefGoogle Scholar
  45. 44.
    J. B. Murphy, C. Pellegrini, Nucl. Instr. Methods, A 237:159 (1985)ADSCrossRefGoogle Scholar
  46. 45.
    C. Joshi, W. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel and D. W. Forslund, Nature, 311:525 (1984)ADSCrossRefGoogle Scholar
  47. 46.
    J. J. Ewing, Workshop on Advanced Accelerator Concepts, Madison August 1986, to appear as A.I.P. Proceedings.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. L. Bobin
    • 1
  1. 1.Université Pierre et Marie CurieParisFrance

Personalised recommendations