Fundamentals of Low-Power Laser Photomedicine

Part of the Ettore Majorana International Science Series book series (EMISS, volume 35)


All biomedical laser application are based on the interaction of laser light with biological systems. Such interaction causes a broad spectrum of effects which can be divided into three principally different groups1. First, low-intensity laser light is absorbed, reflected or rera-diated (as fluorescence) by the substance so that no changes occur within it. Such interactions form the basis for the laser diagnostics (spectral diagnostics of molecules, and macrodiagnostics on the tissue level). Second, low intensity UV and visible radiation can excite electronic states in molecules, and specific photobiological effects occur due to excitation of chromophores in cells (endogenous or exogenous). These processes occur under the light from incoherent sources as well, but the use of laser light can give several benefits from a practical point of view. This group of effects encompasses molecular photobiology and photomedicine. The third class of effects involves high intensity laser radiation which causes damage to tissues by thermal or hydrodynamical destruction. Such processes, rarely observed with incoherent light sources, form the basis for laser surgery. The principal methodologies based on the second and third type of light-biological system interactions are shown in Fig. 1.


Microbeam Irradiation Grow HeLa Cell Cellular Redox Potential Chinese Hamster Fibroblast Synthesis Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Letokhov, Laser Biology and Medicine, Nature, 316, 325:330 (1985)ADSGoogle Scholar
  2. 2.
    R. Pratesi, C. A. Sacchi, “Lasers in Photomedicine and Photobiology”, Springer, Berlin, Heidelberg, New York (1980)Google Scholar
  3. 3.
    D. Kessel and Th. J. Dougherty, “Porphyrin Photosensitization”, Plenum, New York, London (1983)Google Scholar
  4. 4.
    R. V. Bensasson, G. Jori, E. L. Land and T. G. Truscott, “Primary Photo-Processes in Biology and Medicine”, Plenum, New York, London (1985)Google Scholar
  5. 5.
    N. F. Gamaleya, Laser biomedical research in the USSR, in: “Laser Application in Medicine and Biology”, M. L. Wolbarsht, ed., Plenum, New York, London (1977), vol. 3, 1:175Google Scholar
  6. 6.
    G. Galletti, “Laser”, Monduzzi Editore, Bologna (1986)Google Scholar
  7. 7.
    T. I. Karu, Photobiological fundamentals of low-power laser therapy, IEEE J. Quant. Electr., QE-23, vol. 10 (1987)Google Scholar
  8. 8.
    T. I. Karu, Molecular mechanism of therapeutic effect of the low-intensity laser radiation, “Lasers in the Life Sciences”, vol. 2 (1987) (in press)Google Scholar
  9. 9.
    A. S. Kryuk, V. A. Mostovnikov, I. V. Khokhlov and N. S. Serdyuchenko, “The Therapeutic Efficiency of Low-Intensity Laser Light”, Science and Techn. Publishers, Minsk (1986) (in Russian)Google Scholar
  10. 10.
    J. R. Basford, Low Energy Laser Treatment of Pain and Wounds: Hype, Hope or Hokum?, Mayo Clin. Proc, vol. 61; 671:675 (1986)Google Scholar
  11. 11.
    O. A. Tiphlova, T. I. Karu, Effect of Ar laser radiation and noncoherent blue light on E. coli growth, Radiobiology, vol. 26, no. 6, 829:832 (1986) (in Russian)Google Scholar
  12. 12.
    G. E. Fedoseyeva, T. I. Karu, V. S. Letokhov, V. V. Lobko, N. A. Pomoshnikova, T. S. Lyapunova, M. N. Meissel, Effect of He-Ne laser radiation on the reproduction rate and protein synthesis in the yeast”, Laser Chemistry, vol. 5, 27:33 (1984)Google Scholar
  13. 13.
    T. I. Karu, G. S. Kalendo, V. V. LobkoGoogle Scholar
  14. 14.
    T. I. Karu, G. S. Kalendo, V. S. Letokhov, V. V. Lobko, Biostimulation of HeLa cells by low intensity visible light, Parts I–IV, I1 Nuovo Cimento D., vol. 1, 1761:1767 (1982), vol.3, 309:325 (1984), vol. 5, 483:496 (1985)Google Scholar
  15. 15.
    T. I. Karu, O. A. Tiphlova, V. S. Letokhov, V. V. Lobko, Stimulation of E. coli growth by laser and incoherent red light, Il Nuovo Cimento P., vol. 2, 1138:1144 (1983)ADSGoogle Scholar
  16. 16.
    T. I. Karu, G. S. Kalendo, L. V. Pyatibrat, Investigations into the effects of He-Ne laser irradiation on the proliferation of HeLa cells, “Laser in the Life Sciences”(in press).Google Scholar
  17. 17.
    T. I. Karu, G. G. Lukpanova, I. M. Parkhomenko, Yu. Yu. Chirkov, Changes in cAMP level in mammalian cells after irradiation with monochromatic visible light”, Dokl. Akad. Nauk USSR (Proc. USSR Acad. Sci.), vol. 281, 1242:1244 (1985)Google Scholar
  18. 18.
    G. E. Fedoseyeva, N. K. Smolyaninova, T. I. Karu, A. V. Zelenin, Human lymphocyte chromatin changes following irradiation with He-Ne laser, Radiobiology, vol. 27 (1987) (in press) (in Russian)Google Scholar
  19. 19.
    O. A. Tiphlova, T. I. Karu, Action of low-intensity red and far red on growth of E. coli, Microbiology, vol. 56, no. 3 (1987)Google Scholar
  20. 20.
    T. I. Karu, Biological action of low-intensity visible monochromatic light and some of its medical application, in: “Laser”, Proc. Int. Congress on Lasers in Medicine and Surger, Bologna, 25:29, (1985), G. Galletti, ed., Monduzzi Editore, Bologna (1986)Google Scholar
  21. 21.
    A. L. Boynton, J. F. Whitfield, The role of cyclic AMP in cell proliferation: a critical assessment of the evidence, in: “Advances in Cyclic Nucleotide Research”, P. Greengard, G. A. Robinson, eds., vol. 15, Raven, New York, 192:294 (1983)Google Scholar
  22. 22.
    I. Martelly, R. Franquinet, Planarian Regeneration as a model for cellular activation studies, Trends. Biochem. Sci., vol. 9, 468: 471 (1984)Google Scholar
  23. 23.
    B. Chance, P. Cohen, Fr. Jobsis and B. Schoener, Intracellular oxidation-reduction states in vivo, Science, vol. 137, 499:508 (1962)ADSGoogle Scholar
  24. 24.
    M. A. Krebs, Veech, Regulation of the redox state of the pyridine nucleotides in rat liver, in: “Pyridine nucleotide dependent dehydrogenases”, H. Smid, ed., Springer, Berlin, Heidelberg, New York, (1979), pp. 413:434Google Scholar
  25. 25.
    F. L. Crane, H. Goldenberg, D. J. Morre, H. Löw, Dehydrogenases of the plasma membrane, in: “Subcellular Biochemistry”, O. B. Roodyn, ed., vol. 6, Plenum, New York, London (1979), pp.345:399Google Scholar
  26. 26.
    C. Cone, Unified theory on the basic mechanism of normal mitotic control and oncogenesis, J. Theor. Biol., vol. 30, pp.151:181 (1971)CrossRefGoogle Scholar
  27. 27.
    J. Gutkneeht, A. Walter, Trasport of auxin (indoleacetic acid) through lipid bilayer membranes, J. Membrane Biol., vol. 56, 65:72 (1980)Google Scholar
  28. 28.
    P. C. Maloney, E. R. Kashket, T. H. Wilson, A proton-motive force drivesATP synthesis in bacteria, Proc. Nat. Acad. Sci., USA, vol. 71, 3896:3900 (1974)ADSGoogle Scholar
  29. 29.
    O. Tiphlova, T. I. Karu, The action of low-intensity laser light on the transient metabolic processes in E. coli, Dokl. Akad. Nauk, USSR, Proc. USSR Acad. Sci., (1987) (in press)Google Scholar
  30. 30.
    N. G. Aleksidze, The influence of redox potential of the medium on the acetylcholine sensitivity of muscula, Biophysics, vol. 7, 602:608 (1962) (in Russian)Google Scholar
  31. 31.
    J. Poussegur, A. Franchi, G. L. Allemain and S. Paris, Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts, FEBS Lett., vol. 190, 115:119 (1985)Google Scholar
  32. 32.
    A. B. Uzdenskii, Action of laser microbeam irradiation on the isolated crustacean neuron, Biological Sciences, no.3, 20:28 (1980) (in Russian)Google Scholar
  33. 33.
    R. G. Ludkowaskaya, Yu. M. Burmistrov, Light action on the processes of electrogenesis in pigmented crustacean neurons, Dokl. Akad. Nauk., USSR, Proc. USSR Acad. Sci, vol. 230, 1462:1465 (1976)Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • T. Karu
    • 1
  1. 1.Laser Technology CenterUSSR Academy of SciencesTroitzkUSSR

Personalised recommendations