Laser Diagnostics of Industrial Chemical Processes

  • J. Wolfrum
Part of the Ettore Majorana International Science Series book series (EMISS, volume 35)


Industrial chemical processes take place under conditions where the many elementary chemical reactions interact strongly with the various transport processes (diffusion, heat conduction, convection, turbulence, radiational energy transfer). Detailed information on these interactions is necessary to improve the efficiency of industrial processes and to reduce the formation of unwanted side products and pollutants. Interesting new possibilities in this direction come from mathematical modeling of complex chemical processes in laminar or turbulent flows including iheat and species transport and the influence of walls1. Realistic mathematical models require information on temperature, concentrations and velocities of reacting species with high spatial and temporal resolution. The development of powerful and tunable laser light sources from the infrared to the ultraviolet has greatly improved the possibilities for. non-invasive spatially and temporally resolved measurements of species concentrations, mole fraction, temperature, density, velocity and pressure. In this lecture various industrial applications of linear and non-linear laser spectroscopic techniques are described.


Radiational Energy Transfer Industrial Device Realistic Mathematical Model Stimulate Raman Gain Counterflow Diffusion Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. C. Gardiner Jr. Ed, Combustion Chemistry, Springer, New York (1984) J. Wolfrum, 20th Symp. Int. on Combustion, p. 559, Pittsburgh (1985)Google Scholar
  2. 1a.
    B. Rogg, F. Behrendt, J. Warnatz, Ber. Bunsenges. Phys. Chem., 90:1005 (1986)Google Scholar
  3. 1b.
    J. Wolfrum, VDI Berichte, 617:301 (1986)Google Scholar
  4. 2.
    J. B. Jeffries, R. A. Copeland, D. R. Crosley, J. Chem. Phys., 85:1898 (1986)ADSCrossRefGoogle Scholar
  5. 3.
    E. H. Piepmeier, Spectrochim. Acta, 27 B:431, (1972)ADSGoogle Scholar
  6. 3a.
    J. W. Daily, Appl. Opt., 16:568 (1977)ADSCrossRefGoogle Scholar
  7. 3b.
    Baronavski, J. R. Mc Donald, J. Chem. Phys., 66:3300 (1977)ADSCrossRefGoogle Scholar
  8. 4.
    K. Kohse-Höinghaus, R. Heidenreich, Th. Just., 20th Symp. Int. on Combustion, p. 1177, Pittsburgh (1985)Google Scholar
  9. 4a.
    M. J. Cottereau, Appl. Opt., 25:744 (1986)ADSCrossRefGoogle Scholar
  10. 5.
    D. Stepowski, M. J. Cottereau, Comb, and Flame, 40:65 (1981)CrossRefGoogle Scholar
  11. 6.
    D. Stepowski, A. Garo, Appl. Opt., 24:2478 (1985)ADSCrossRefGoogle Scholar
  12. 6a.
    M. H. Hertz, M. Aldén, Appl. Phys., B 42:97 (1987)CrossRefGoogle Scholar
  13. 7.
    M. Aldén, H. Edner, G. Holmsted, S. Svanberg, T. Högberg, Appl. Opt., 21:1236 (1982)ADSCrossRefGoogle Scholar
  14. 8.
    G. Kychakoff, R. D. Howe, R. K. Hanson, Appl. Opt., 23:704 (1984)ADSCrossRefGoogle Scholar
  15. 9.
    R. J. Cattolica, S. R. Vosen, 20th Symp. Int. on Combustion, p.1273, Pittsburgh (1985)Google Scholar
  16. 10.
    J. E. M. Goldsmith, R. J. M. Anderson, Appl. Opt., 24:607 (1986)ADSCrossRefGoogle Scholar
  17. 10a.
    J. E. M. Goldsmith, N. M. Larendeau, Appl. Opt., 25:276 (1986)ADSCrossRefGoogle Scholar
  18. 10b.
    M. Aldén, S. Wallin, W. Wendt, Appl. Phys., B 33:205 (1984)Google Scholar
  19. 10c.
    J. M. Seitzman, G. Kychakoff, R. K. Hanson, Opt. Lett., 10:439 (1985)ADSCrossRefGoogle Scholar
  20. 10d.
    J. Haumann, J. M. Seitzman, R. K. Hanson, Opt. Lett., 11 (1986)Google Scholar
  21. 11.
    G. A. Massey, C. J. Lemon, IEEE J. Quant. Elec, QE 20:454 (1984)ADSCrossRefGoogle Scholar
  22. 11a.
    F. Itoh, G. Kychakoff, R. K. Hanson, J. Vac. Sei. Technol., B 3(6):1600 (1985)CrossRefGoogle Scholar
  23. 12.
    K. Kleinermanns, P. Monkhouse, R. Suntz, J. Wolfrum, Non-nuclear Energy R+D Contract no. EN3E-0080-D(B) Periodic Report 1986Google Scholar
  24. 13.
    K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, Wirefordner, Appl. Spectr., 34:85 (1980)ADSCrossRefGoogle Scholar
  25. 14.
    L.A. Melton, Appl. Opt. 22:2224 (1983)ADSCrossRefGoogle Scholar
  26. 14a.
    L. A. Melton, J. F. Verdieck, Comb. Sci, and Tech., 42:217 (1985)CrossRefGoogle Scholar
  27. 14b.
    A. M. Murray, L. A. Melton, Appl. Opt., 24:2783 (1985)ADSCrossRefGoogle Scholar
  28. 14c.
    G. M. Brown, J. C. Kent, in: Flow Visualization III, Ed. W. J. Wang, p. 118, Hemisphere Pub. Corp. (1985)Google Scholar
  29. 15.
    R. P. Lucht, N. M. Laurendeau, D. W. Sweeney, Appl. Opt., 21:3729 (1982)ADSCrossRefGoogle Scholar
  30. 16.
    R. J. Cattolica, D. A. Stephenson, in: Progress in Astronautics and Aeronautics, 95:714 (1985)Google Scholar
  31. 17.
    M. P. Lee, P. H. Paul, R. K. Hanson, Opt. Lett., 11 (1986)Google Scholar
  32. 18.
    B. Hiller, R. K. Hanson, Opt. Lett., 10:206 (1985)ADSCrossRefGoogle Scholar
  33. 18a.
    B. Hiller, L. M. Cohen, R. K. Hanson, AIAA Reprint 860/61 (1986)Google Scholar
  34. 19.
    D. L. Hartley, in: Laser Raman Gas Diagnostics, Eds. M. Lapp and C. M. Penney, p. 311, Plenum (1974)Google Scholar
  35. 19a.
    K. F. Knoche, H. J. Daams, R. Bahnen, E. Hassel, VDI-Bèrichte, 498:215 (1983)Google Scholar
  36. 20.
    F. Pischinger, E. Scheid, K. F. Knoche, H. J. Daams, T. Heinze, U. Reute, SAE Paper no. 861121 (1986)Google Scholar
  37. 20a.
    R. W. Dibble, A. R. Masri, R. W. Bilger, Combustion and Flame (1986)Google Scholar
  38. 21.
    B. Yip, M. B. Long, Opt. Lett., 11:64 (1986)ADSCrossRefGoogle Scholar
  39. 21a.
    M. B. Long, P. S. Levin, D. C. Fourguette, Opt. Lett., 10:267 (1985)ADSCrossRefGoogle Scholar
  40. 22.
    A. O. Zur Loye, F. V. Bracco, D. A. Santavicca, Proc. Int. Symp. on Diagnostics and Modeling of Combustion in Reciprocating Engines, p. 249, Tokyo (1985)Google Scholar
  41. 23.
    P. P. Maker, R. W. Terhune, Phys. Rev., A 137:801 (1965)ADSCrossRefGoogle Scholar
  42. 24.
    M. Péalet, J. P. Taran, J. Taillet, M. Bacal, A. M. Bruneteau, Combust. Flame, 54:149 (1983)CrossRefGoogle Scholar
  43. 25.
    R. M. Green, R. P. Lucht, Proc. Int. Symp. on Diagnostics and Modeling of Combustion in Reciprocating Engines, Tokyo (1985)Google Scholar
  44. 26.
    A. C. Eckbreth, Appl. Phys. Lett., 32:421 (1978)ADSCrossRefGoogle Scholar
  45. 26a.
    Y. Prior, Appl. Opt., 19:1741 (1980)ADSCrossRefGoogle Scholar
  46. 27.
    T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, Ber. Bunsenges. Phys. Chem., 90:1010 (1986)Google Scholar
  47. 28.
    R. J. Hall, Appl. Spectrosc, 34:700 (1980)ADSCrossRefGoogle Scholar
  48. 29.
    R. L. Farrow, R. P. Lucht, G. L. Clark, R. E. Palmer, Appl. Opt., 24:2241 (1985)ADSCrossRefGoogle Scholar
  49. 30.
    R. E. Teets, Opt. Lett., 9:226 (1984)ADSCrossRefGoogle Scholar
  50. 30a.
    R. L. Farrow, L. A. Rahn, J. Opt. Soc. Am., B2:909 (1985)ADSGoogle Scholar
  51. 30b.
    J. P. Sala, J. Bonamy, D. Robert, B. Lavorel, G. Millot, H. Berger, Chem. Phys., 106:427 (1986)CrossRefGoogle Scholar
  52. 31.
    F. M. Kamga, M. G. Sceats, Opt. Lett., 5:126 (1980)ADSCrossRefGoogle Scholar
  53. 32.
    L. A. Rahn, L. J. Zych, P. L. Mattem, Opt. Comm., 30:249 (1979)ADSCrossRefGoogle Scholar
  54. 32a.
    A. C. Eckbeth, R. J. Hall, Comb. Scie. Techn., 25:175 (1981)CrossRefGoogle Scholar
  55. 33.
    J. B. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, Opt. Lett., 9:341 (1984)ADSCrossRefGoogle Scholar
  56. 33a.
    B. Dick, A. Gierulski, Appl. Phys., B40:1 (1986)Google Scholar
  57. 34.
    A. Gierulski, M. Noda, T. Yamamoto, G. Marowsky, A. Sclenzka, “Pumping-induced Population Cganges in Broadband CARS-Spectrosco-py”, to be published in Opt. Lett. (1987)Google Scholar
  58. 35.
    T. Cool, Appl. Opt., 23 (10): 1559 (1984)ADSCrossRefGoogle Scholar
  59. 36.
    L. P. Hart, B. W. Smith, N. Omenetto, Spectrochim. Acta, 40B:1637 (1985)ADSCrossRefGoogle Scholar
  60. 36a.
    K. C. Smyth, W. G. Mallard, J. Chem. Phys., 77:1779 (1982)ADSCrossRefGoogle Scholar
  61. 37.
    B. W. Smith, L. P. Hart, and N. Omenetto, Anal. Chem., 58:2147–51 (1986)CrossRefGoogle Scholar
  62. 38.
    N. Omenetto, T. Berthoud, P. Cavalli, G. Rossi, Appl. Spectrosc., 39:500 (1985)ADSCrossRefGoogle Scholar
  63. 39.
    J. E. M. Goldsmith, 20th Symp. Int. on Combustion, p. 1331, Pittsburgh (1985)Google Scholar
  64. 40.
    K. C. Smyth, P. H. Taylor, Chem. Phys. Lett., 122:518–22 (1985)ADSCrossRefGoogle Scholar
  65. 41.
    J. Wolfrum, “Schadstoffe in Verbrennungsvorgängen”, p. 7, TEFCLAM, Stuttgart (1985)Google Scholar
  66. 42.
    S. M. Schoenung, R. K. Hanson, Comb. Sci. Techn., 24:227 (1981)CrossRefGoogle Scholar
  67. 42a.
    J. J. Harris, A. M. Weiner, Opt. Lett.,6:142 (1981)ADSCrossRefGoogle Scholar
  68. 43.
    H. Neckel, J. Wolfrum, Appl. Phys. B (1987)Google Scholar
  69. 44.
    M. Gehring, K. Hoyermann, H. Schacke, J. Wolfrum, 14th Symp. Int. on Combustion, p. 99, Pittsburgh (1973)Google Scholar
  70. 44a.
    T. Dreier, J. Wolfrum, 20th Symp. Int. on Combustion, p. 695, Pittsburgh (1985) R. K. Lyon, U. S. Patent 3900544Google Scholar
  71. 45.
    G. Mittelbach, H. Voje, VGB-Handbuch, “NO -Bildung un NO –Minderung für fossile Brennstoffe” (1986)Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. Wolfrum
    • 1
  1. 1.Physikalisch-Chemisches InstituteRuprecht-Karls-UniversitätHeidelbergWest Germany

Personalised recommendations