Progress in Laser Techniques: Toward Industrial U.V. Laser Tools for the Nineties

  • M. L. Gaillard
Part of the Ettore Majorana International Science Series book series (EMISS, volume 35)


After twenty five years of active laser research, several thousands of laser systems have been identified and tested in laboratories throughout the world. Though many such systems found a niche in scientific instrumentation, the list of the laser devices which are apt to survive in the harsh environment of industry remains nevertheless amazingly short. No one overlooks the inroads made by the gas (mainly CO2) and solid (YAG) lasers in material processing workshop. During the last decade however, only two serious new contenders have emerged: the excimer and the copper vapor lasers. From an industrial point of view both are still very much in the testing stage despite an impressive body of scientific and technical evidence which clearly speaks in favor of U.V. and visible lasers for industrial use.


Excimer Laser High Repetition Rate Master Oscillator Power Amplifier Laser Head XeCI Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Eletskii, Excimer Lasers, Sov. Phys. Usp., 21:502 (1978)ADSCrossRefGoogle Scholar
  2. 2.
    J. J. Ewing, Excimer Lasers, in: “Laser Handbook”, M.L. Slitch, ed. North Holland, Princeton (1979)Google Scholar
  3. 3.
    B. L. Fontaine, Lasers à eximères, in: “Summer School: rectivity in plasmas, application to lasers and surface treatments”, Editions de Physique, Les Ulls (1984)Google Scholar
  4. 4.
    P. Burlamacchi, Excimer laser: Pratical excimer laser sources, in: “Physics of new laser sources”, N.B. Abraham, F.T. Arecchi, A. Mooradian and A. Sona ed. Nato Asi Series, Plenum Press, New-York (1985)Google Scholar
  5. 5.
    C. A. Brau, Rare gas halogen excimers, in: “Excimer lasers”, C.H.K. Rhodes, ed. 2nd Edition, Springer-Verlag, Berlin (1984)Google Scholar
  6. 6.
    M. F. Golde and B. A. Thrush, Vacuum U.V. emission from reactions of metastable inert gas atoms: chemiluminescence of ArO and ArCl, Chem. Phys. Lett., 29:486 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    J. E. Velazco and B. A. Setser, Bound-free emission spectra of diatomic Xenon halides, J. Chem. Phys., 62:1990 (1975)ADSCrossRefGoogle Scholar
  8. 8.
    T. H. Dunning and P. J. Hay, The covalent and ionic states of the rare gas monofluorides, J. Chem. Phys., 69:134 (1978)ADSCrossRefGoogle Scholar
  9. 8a.
    T. H. Dunning and P. J. Hay, The electronic states of KrF, J. Chem. Phys., 66:1306 (1977)ADSCrossRefGoogle Scholar
  10. 9.
    P. J. Hay and T. H. Dunning Jr, The covalent and ionic states of the Xenon halides, J. Chem. Phys., 69:2209 (1978)ADSCrossRefGoogle Scholar
  11. 10.
    R. S. Taylor, P. B. Corkum, S. Watanabe, K. E. Leopold and A. J. Alcock, Time dependent gain and absorption in a 5 J U.V. preio-nized XeCl laser, IEEE J. Quant. Electron. QE — 19:416 (1983)ADSCrossRefGoogle Scholar
  12. 11.
    M. Hiramatsu, M. Furuhashi and T. Goto, Determination of electron density in discharge pumped excimer laser using stark broadening of H line, J. Appl. Phys., 60:1946 (1986)ADSCrossRefGoogle Scholar
  13. R. C. Hollins, D. L. Jordan and J. Coutts, Time-resolved electron density measurements in rare gas halide laser discharges, J. Phys. D., 19:37 (1986)ADSCrossRefGoogle Scholar
  14. 12.
    M. Ohwa and M. Obara, Theoretical analysis of efficiency scaling laws for a self sustained discharge pumped XeCl laser, J. Appl. Phys., 59:32 (1986)ADSCrossRefGoogle Scholar
  15. A. Gevaudan, B. L. Fontaine, B. M. Forestier and M. L. Sentis, Modelling of the X-Ray preionized XeCl self-sustained discharge laser in: “Gas flow and Chemical lasers”, S. Rosenwaks, ed. Springer-Verlag, Berlin (1987)Google Scholar
  16. 13.
    M. R. Flannery and T. P. Tang, Ionic recombination of rare gas ions X+ with F- in a dense gas X, Appl. Phys. Lett., 32:327 (1978)ADSCrossRefGoogle Scholar
  17. 14.
    M. Allan and S. F. Wong, Dissociative attachment from vibrationally and rotationally excited HCl and HF, J. Chem. Phys., 74:1687 (1981)ADSCrossRefGoogle Scholar
  18. W. L. Nighan and R. T. Brown, Efficient XeCl (B) formation in an electron beam assisted Xe/HCl laser discharge, Appl. Phys. Lett., 36:498 (1980)ADSCrossRefGoogle Scholar
  19. 15.
    D. C. Lorents, Excited state kinetics for XeCl* in: “Proceeding of the International Conference on Laser 84”, STS Press (Mc Lean, Va) (1985)Google Scholar
  20. J. Lecalve, M. C. Castex, B. Jordan, G. Zimmerer, T. Moller and D. Haaks, Time resolved studies of the RgCl (B-X) emission of a synchrotone radiation state selective excitation of CI by Rg (Xe, Kr, Ar) mixture, in: “Proc. 38th International Meeting of the French Chemical Society”, F. Lahmany, Ed. p. 639, Elzenez Scientific Publishers (1985)Google Scholar
  21. 16.
    M. G. Prisant, C. T. Rettiner and R. N. Zare, A direct Interaction model for chemiluminescent reactions, J. Chem. Phys., 81:2689 (1984)ADSCrossRefGoogle Scholar
  22. 17.
    A. J. Palmer, A physical model on the initiation of atmospheric pressure glow discharge, Appl. Phys. Lett., 25:138 (1974)ADSCrossRefGoogle Scholar
  23. 18.
    J. I. Levatter, Necessary conditions for the homogeneous formation of a volume avalanche discharge with specific application to rare gas halide excimers, Ph. D. Thesis, University of California, San Diego (1979)Google Scholar
  24. 19.
    A. Gevaudian, Modélisation d’un laser à excipiexe XeCl à décharge par avalanche préionisée par faisceau de rayons X, Thèse, Université d’Aix-Marseille III (1986)Google Scholar
  25. 20.
    R. C. Sze and T. R. Loree, Experimental study of a KrF and ArF discharge laser, IEEE J. Quant. Elect., QE-14:944 (1978)ADSCrossRefGoogle Scholar
  26. 21.
    S. C. Lin, C. E. Zheng, D. L. J. Matsumoto and S. B. Zhu, Attachment kinetics and life time of preionization electrons in rare-gas halogen laser mixtures, Appl. Phys., B 40:15 (1986)CrossRefGoogle Scholar
  27. 22.
    J. I. Levatter and S. C. Lin, Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas pressures, J. Appl. Phys., 51:210 (1980)ADSCrossRefGoogle Scholar
  28. 23.
    A. V. Kozyrev, Y. D. Korolev, G. A. Mesyats, Y. N. Novselov, A. M. Prokhorov, V. S. Skakun, V. F. Tarasenko and S. A. Genkin, Use of X-ray radiation to preionize the active medium in high pressure gas lasers, Sov. J. Quant. Elec., 14:356 (1984)CrossRefGoogle Scholar
  29. 24.
    C. R. Tallman and I. J. Bigio, Determination of the minimum X-ray flux for effective preionization of an XeCl laser, Appl. Phys. Lett., 42:149 (1983)ADSCrossRefGoogle Scholar
  30. 25.
    R. Dumanchin and J. Rocca-Serra, Augmentation de l’énergie et de la puissance fournie par unité de volume dans un laser à CO2 en régime puisé, C.R. Acad. Sci. Paris, B269:916 (1969)Google Scholar
  31. 26.
    R. Tennant, Control of contaminants in XeCl lasers, Laser Focus, 17, 10:65 (1981)Google Scholar
  32. 27.
    K. Midorikawa, M. Obara and T. Fujioka, X-ray preionization of raregas halide lasers, IEEE J. Quant. Elect., QE-20:198 (1984)ADSCrossRefGoogle Scholar
  33. 28.
    R. Buffa, P. Burlamacchi, M. Matera, H. F. Ranea Sandoval and R. Salimbeni, High repetition rate effects in XeCl TEA lasers, Optic. Comm., 40:288 (1982)ADSCrossRefGoogle Scholar
  34. 29.
    P. E. Cassady, Fluid dynamics in closed-cycle pulsed laser, AIAA J, 23:1922 (1985)ADSCrossRefGoogle Scholar
  35. 30.
    I. Smilanski, S. R. Byron and T. R. Burkes, Electrical excitation of an XeCl laser using magnetic pulse compression, Appl. Phys. Lett., 40:547 (1982)ADSCrossRefGoogle Scholar
  36. 31.
    L. Holmes, Excimer lasers take on a practical look, Laser Focus, 22, 7:72 (1986)Google Scholar
  37. 32.
    G. Klauminzer, Oscillator-amplifier approach in excimer lasers, Lasers and applications, 5, 9:75 (1986)Google Scholar
  38. 33.
    G. Balog and R. C. Sze, Lifetime studies of a commercial XeCl excimer laser, p.713, in:“Proceeding of the International conference lasers 85”, C. P. Wang ed. STS Press, Mc Lean, Va (1986)Google Scholar
  39. 34.
    H. Pummer, The excimer laser: 10 years of fast growth, Photonics Spectra, 19, 5:73 (1985)Google Scholar
  40. 35.
    L. F. Champagne, A. J. Dudas and B. L. Wexler, Large volume X-ray preionized XeCl laser, Paper ThR81, Cleo 1984, Anahelm, California, June 19–22 (1984)Google Scholar
  41. 36.
    B. Fontaine and B. Forestier, Rapport sur l’état des recherches sur les lasers à ecxiplexes de grande puissance moyenne et perpectives à moyen terme, Rapport SGDN n° 16 du 9 Octobre 1984Google Scholar
  42. 37.
    R. S. Taylor and K. E. Leopold, Microsecond duration optical pulses from a U.V.-preionized XeCl Laser, Appl. Phys. Lett., 47:81 (1985)ADSCrossRefGoogle Scholar
  43. 38.
    W. H. Long Jr, M. J. Plummer and A. E. Stappaerts, Efficient discharge pumping of an XeCl laser using a high voltage prepulse, Appl. Phys. Lett., 43:737 (1983)ADSCrossRefGoogle Scholar
  44. 39.
    K. Miyazaki, Y. Toda, T. Hasama and T. Sato, Efficient and compact discharge XeCl laser with automatic U.V. preionization, Rev. Scl. Instrum., 56:201 (1985)ADSCrossRefGoogle Scholar
  45. 40.
    D. Pigache, J. Bonnet and D. David, A short pulse secondary emission electron gun for high pressure gas lasers and plasma chemical reactors, XVI Internat. Conf. on “Phenomena in ionized Gases”, Düsseldorf (RFA), 29 August (1983)Google Scholar
  46. 41.
    M. L. Sentis, B. Forestier, B. Fontaine, P. Issarties and D. Pigache, High-pulse repetition rate limitations in a high average power XeCl laser, in: “Gas Flow and Chemical Lasers”, S. Rosenwaks Ed. Springer-Verlag, Berlin (1987)Google Scholar
  47. 42.
    D. Pigache, French Patent, 72–38368 (1972)Google Scholar
  48. 43.
    R. R. Butcher and T. S. Falhen, Magnetically switched 150 W XeCl laser, CLEO 84 Technical Digest THP1, p. 202 (1984)Google Scholar
  49. 44.
    C. H. Fisher, M. J. Kushner, T. E. Dehart, J. P. Mc Daniel, R. A. Petr and J. J. Ewing, High efficiency XeCl laser with spiker and magnetic isolation, Appl. Phys. Lett., 48:1574 (1986)ADSCrossRefGoogle Scholar
  50. 45.
    M. D. Hogge and S. C. Crow, Flow and acoustic in pulsed excimer systems, AIAA Conf. on fluid dynamics of high power laser, Paper n° II-4 Cambridge (MA), Oct. (1978)Google Scholar
  51. 46.
    M. Baranov, D. D. Malyuta, V. S. Mezhevov and A. P. Napartovich, Influence of gas density perturbations on the ultimate characteristics of pulse periodic lasers with U.V. preionization, Sov. J. Quant. Elect., 10:1512 (1980)ADSCrossRefGoogle Scholar
  52. 47.
    B. M. Forestier, M. L. Sentis, S. M. Fournier and B. L. Fontaine, Flow and acoustics in a closed-loop high pulse rate frequency XeCl laser, in: “5th GCL Symposium, Oxford”, Ed. Adam Hilger, London (1985)Google Scholar
  53. 48.
    E. Baum , C.G. Koop, V. A. Kulberny, K. R. Magiawala and J. Shwartz, Density homogeneity control in repetitively pulsed gas laser, in: “Gas flow and chemical lasers”, S. Rosenwaks, Ed. Springer Verlag, Berlin (1987)Google Scholar
  54. 49.
    C. J. Knight, Sidewal muffler design for pulsed exciplex lasers, AIAA 23rd Aerospace Sciences Meeting, Jan. 14–17 (Reno, Nevada) (1985)Google Scholar
  55. 50.
    H. Shields and A. J. Alcock, XeCl fluorescence and absorption in self sustained discharge XeCl lasers, Appl. Phys., B 35:167 (1984)CrossRefGoogle Scholar
  56. 51.
    J. E. Andrew and P. E. Dyer, Gain measurements in ArF and FrF excimer discharges using axial and sidelight fluorescence detection, Opt. Commun., 54:117 (1985)ADSCrossRefGoogle Scholar
  57. 52.
    P. Kh. Mirdla, V. E. Peet, R. A. Sorkina, E. E. Tamme, A. B. Treshchalov and A. V. Sherman, Theoretical and experimental investigations of an electric discharge plasma of an XeCl laser, Sov. J. Quantum Electr., 16:1438 (1986)ADSCrossRefGoogle Scholar
  58. 53.
    A. V. Dem’Yanov, V. S. Egorov, M. V. Kochetov, A. P. Napartovich, A. A. P Tor, N. P. Penkin, P. Yu. Serdobintsev and N. N. Shubin, Investigation of the dynamics of the populations of electronic states of atoms and ions in a self-sustained discharge in an HCl -Xe-He mixture, Sov. J. Quant. Electr., 16:817 (1986)ADSCrossRefGoogle Scholar
  59. 54.
    R. S. Taylor, A. J. Alcock and K. E. Leopold, Laser induced preionization of a rare-gas halide discharge, Opt. Lett., 5:216 (1980)ADSCrossRefGoogle Scholar
  60. 55.
    R. S. Taylor, Preionization and discharge stability study of long optical pulse duration U.V. preionized XeCl lasers, Appl. Phys., B 41:1 (1986)Google Scholar
  61. 56.
    S. Sumida, K. Kunitomo, M. Kaburagi, M. Obara, T. Fujioka and K. Sato, Effect of preionization uniformity on a KrF laser, J. Appl. Phys., 52:2682 (1981)ADSCrossRefGoogle Scholar
  62. 57.
    B. Lacour and C. Vannier, Photo triggering of a 1 J excimer laser using either U.V. or X-rays, Appl. Phys. Lett. to be publishedGoogle Scholar
  63. 58.
    W. L. Nighan, Plasma processes in electron beam controlled rare gas halide lasers, IEEE J. Quant. Electr. QE, 14:714 (1978)ADSCrossRefGoogle Scholar
  64. 59.
    J. Coutts and C. E. Webb, Stability of transverse self-sustained discharge excited long pulse XeCl lasers, J. Appl. Phys., 59:704 (1986)ADSCrossRefGoogle Scholar
  65. 60.
    E. P. Velikhov, in: “Molecular gas lasers”, MIR Edition Moscow (1981)Google Scholar
  66. 61.
    R. Turner, The glow to arc transition in a pulsed high pressure gas discharge, J. Appl. Phys., 52:681 (1981)ADSCrossRefGoogle Scholar
  67. 62.
    O. de Witte, B. Lacour and C. Vannier, Photoionization switching of the gas lasers, in: “Conference on laser and Electro Optics”, CLEO 82, Technical Digest, paper WD6, Phoenix, Ariz. (Apr. 1982)Google Scholar
  68. 63.
    C. B. Collins, Z. Chen, V. T. Gylys, H. R. Jahani, J. M. Pouvesle and J. Stevefelt, “The importance of three body processes to reaction kinetics at atmospheric pressures”, IEEE J. Quant. Electron. QE 22:38 (1986)ADSCrossRefGoogle Scholar
  69. 64.
    J. M. Pouvesle, Thesis-Universitè d’Orléans (1986)Google Scholar
  70. 65.
    C. B. Collins and F. W. Lee, “Measurement of the rate coefficients for the bimolecular and termolecular ion-molecule reactions of Ne2 + with selected atomic and molecular species”, J. Chem. Phys., 72:5381 (1980)ADSCrossRefGoogle Scholar
  71. 66.
    K. Hakutaq, H. Komori, N. Mukai and H. Takuma, Absolute photoabsorption cross-section measurement of the Kr2F exeimer at 248 nm, J. Appl. Phys., 61:2113 (1987)ADSCrossRefGoogle Scholar
  72. A. W. Mc Cown, Absorption at 248 nm by Kr2F*, Appl. Phys. Lett., 50:804 (1987)ADSCrossRefGoogle Scholar
  73. 67.
    T. H. Johnson and A. M. Hunter, Physics of the krypton fluoride laser, J. Appl. Phys., 51:2406 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. L. Gaillard
    • 1
  1. 1.Laboratoires De MarcoussisCentre de Recherche de la Compagnie Générale d’ElectricitéMarcoussisFrance

Personalised recommendations