Monopole ’83 pp 589-595 | Cite as

A Scintillator-Proportional Counter Search For Monopoles

  • F. Kajino
  • S. Matsuno
  • Y. K. Yuan
  • T. Kitamura
Part of the NATO ASI Series book series (NSSB, volume 111)


A search for slowly moving superheavy magnetic monopoles has been performed using a combined detector of scintillation counters and proportional chambers. At the first stage, the minimum threshold of the energy loss was set at 1/20 minimum ionization for both detectors. PR gas was used for proportional chambers. An upper flux limit of 1.8 × 10−12 cm−2 sr−1 s−1 for monopoles was obtained over a velocity range from 2.5 × 10−4 c to 1.0 × 10−1 c at 90% confidence level. At the second state, mixed gas of helium + 10% methane was used for proportional chambers, because a methane molecule is ionized through the Penning effect by a helium metastable state excited by the monopole. For this condition, an upper flux limit of 1.6 × 10−12 cm−2 sr−1 s−1 for monopoles was obtained over the velocity range from ~3 × 10−4 c to 1c at 90% confidence level.


Metastable State Scintillation Counter Helium Atom Velocity Range Grand Unify Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.D. Drell, N.M. Kroll, M.T. Mueller, S.J. Parke and M.A. Ruderman, Phys. Rev. Lett. 50, 644 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    F. Kajino, T. Kitamura, K. Mitsui, Y. Ohashi, A. Okada, Y.K. Yuan, T. Aoki, S. Matsuno, 18th Int. Cosmic Ray Conf., Bangalore 5, 56 (1983); J. Phys. G (to be published).Google Scholar
  3. 3.
    D.M. Ritson, SLAC-PUB-2950, 1982 (unpublished).Google Scholar
  4. 4.
    S.P. Ahlen and G. Tarie, Phys. Rev. D27, 688 (1983).ADSGoogle Scholar
  5. 5.
    W.P. Jesse, J. Chem. Phys. 41, 2060 (1964).ADSCrossRefGoogle Scholar
  6. 6.
    N.M. Kroll, in this volume.Google Scholar
  7. 7.
    J.D. Ullman, Phys. Rev. Lett. 47, 289 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    T. Mashimo, K. Kawagoe and M. Koshiba, J. Phys. Soc. Jpn. 51, 3067 (1982).ADSCrossRefGoogle Scholar
  9. T. Mashimo, S. Orito, K. Kawagoe, S. Nakamura and M. Nozaki, Phys. Lett. 128B, 327 (1983).ADSGoogle Scholar
  10. 9.
    E.N. Alexeyev, M.M. Boliev, A.E. Chudakov, B.A. Makoev, S.P. Mikheyev and Y.V. Sten’kin, Lett. Nuovo Cimento 35, 413 (1982).CrossRefGoogle Scholar
  11. 10.
    R. Bonarelli, P. Capiluppi, I. D’antone, G. Giacomelli, G. Mandrioli, C. Merli and A.M. Rossi, Phys. Lett. 112B, 100 (1982), andADSGoogle Scholar
  12. R. Bonarelli, P. Capiluppi, I. D’antone, G. Giacomelli, G. Mandrioli, C. Merli and A.M. Rossi, Phys. Lett. 126B, 137 (1983).ADSGoogle Scholar
  13. 11.
    D.E. Groom E.C. Loh, H.N. Nelson and D.M. Ritson, Phys. Rev. Lett. 50, 573 (1983).ADSCrossRefGoogle Scholar
  14. 12.
    J. Bartelt, H. Courant, K. Heller, T. Joyce, M. Marshak, E. Peterson, D.S. Ayres, J.W. Dawson, T.H. Fields, E.N. May and L.E. Price, Phys. Rev. Lett. 50, 655 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • F. Kajino
    • 1
  • S. Matsuno
    • 2
  • Y. K. Yuan
    • 3
  • T. Kitamura
    • 1
  1. 1.Institute for Cosmic Ray ResearchUniversity of TokyoTanashi, TokyoJapan
  2. 2.College of Liberal ArtsKobe UniversityNadu-ku, Kobe 657Japan
  3. 3.Institute of High Energy PhysicsChinese Academy of SciencesBeijingPeoples Republic of China

Personalised recommendations