Kaluza-Klein Theories and the Dirac Monopole

  • Malcolm J. Perry
Part of the NATO ASI Series book series (NSSB, volume 111)


Conventional grand unified theories unify the strong interactions with electroweak interactions by postulating that at energy scales of ∼1015 GeV the two interactions become different facets of the same. In a typical scheme of this type, a gauge group G becomes spontaneously broken down to H = SU(3)×SU(2)×U(1) at energies less than the grand unification scale. G is often supposed to be SU(5), although it can in principle be any compact gauge group which contains H. At these very high energies, it seems to be rather difficult to imagine any direct tests of such theories. Nevertheless, there are at least two indirect tests of these ideas. The first is that they predict the existence of baryon-number violating interactions.1 These would give rise to an observable decay of the proton on timescales of the order of 1031±2 years. Such decays have not been observed. One should, however, point out that the observability of large amounts of antimatter in the universe is superficially incompatible with the standard big-bang model (or inflationary models) of the universe unless such baryon-number non-conserving reactions took place in the early universe.2 These would guarantee that only matter would be present in the universe at its current epoch.


Gauge Group Gauge Field Magnetic Charge Spacetime Dimension Grand Unify Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ellis, M.K. Gaillard, D.V. Nanopoulos and S. Rudaz, Nucl. Phys. B 176, 61 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    E. Kolb and S. Wolfram, Nucl. Phys. B 172, 224 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    S. Coleman, “The Magnetic Monopole Fifty Years Later,” Harvard preprint (1982).Google Scholar
  4. 4.
    E.N. Parker, Ap. J. 160, 383 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    J. Preskill, Phys. Rev. Lett. 43, 1365 (1979).ADSCrossRefGoogle Scholar
  6. A.H. Guth, Phys. Rev. D 23, 347 (1981).ADSCrossRefGoogle Scholar
  7. A. Albrecht and P. Steinhardt, Phys. Rev. Lett 48, 1220 (1982).ADSCrossRefGoogle Scholar
  8. 6.
    E. Witten, Nucl. Phys. B 186, 412 (1981) and Princeton preprint 1983.MathSciNetADSCrossRefGoogle Scholar
  9. 7.
    J. H. Schwarz, Phys. Rep. 89, 223 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 8.
    T. Kaluza, Sitzungber Preuss Akad. Wiss. Phys. Math. 61, 996 (1921).Google Scholar
  11. O. Klein, Z. Phys. 37, 895 (1982).ADSGoogle Scholar
  12. A. Einstein and P. Bergman, Ann. Math, 39, 683 (1938).CrossRefGoogle Scholar
  13. P. Jordan, Ann. Phys. (Leipzig) 1, 219 (1947).ADSGoogle Scholar
  14. Y. Thiry, Comptes Rendus Acad. Sci. (Paris), 226, 216 (1948).MathSciNetMATHGoogle Scholar
  15. Y. Thiry, Comptes Rendus Acad. Sci. (Paris), 226, 881, (1948).Google Scholar
  16. A. Lichnérowicz, Théories Relativistes de la gravitation et de l’electro-magnetisme, A. Masson et Cie, Paris (1955).Google Scholar
  17. O. Klein, New Theories in Physics, Martinus Nijshoff, den Haag (1939).Google Scholar
  18. B.S. deWitt, Dynamical theory of groups and fields, Gordon and Breach, London (1965).Google Scholar
  19. R. Kerner, Ann. Inst. H. Poincaré 9, 143 (1968).MathSciNetGoogle Scholar
  20. A. Trautman, Rep. Math. Phys. 1 291 (1970).MathSciNetCrossRefGoogle Scholar
  21. Y.M. Cho and P.G.O. Freund, Phys. Rev. D 12, 1711 (1972).MathSciNetADSCrossRefGoogle Scholar
  22. Y.M. Cho, J. Math. Phys. 16, 2029 (1975).ADSCrossRefGoogle Scholar
  23. E. Cremmer and J.H. Schwarz, Phys. Lett. 57B, 463 (1975).ADSGoogle Scholar
  24. 9.
    A. Einstein and W. Pauli, Ann. Math. 44, 131 (1943).MathSciNetMATHCrossRefGoogle Scholar
  25. 10.
    R. Sorkin, Phys. Rev. Lett. 51, 87 (1983).MathSciNetADSCrossRefGoogle Scholar
  26. 11.
    D.J. Gross and M.J. Perry, Nucl. Phys. B 226, 29 (1983).MathSciNetADSCrossRefGoogle Scholar
  27. 12.
    P.G. Roll, R. Krotkov and R.H. Dicke, Ann. Phys. (NY) 26, 442 (1967).MathSciNetADSCrossRefGoogle Scholar
  28. 13.
    M.J. Perry, Phys. Lett. B (in press).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Malcolm J. Perry
    • 1
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations