Advertisement

Monopole ’83 pp 333-337 | Cite as

Binding of Nuclei to Monopoles

  • Charles J. Goebel
Part of the NATO ASI Series book series (NSSB, volume 111)

Abstract

The Hamiltonian describing the motion of a nucleus in the magnetic field of a monopole is
$$ H = \frac{1} {{2M}}\left[ {p_r^2 + \frac{{\Lambda ^2 - \nu ^2 - \eta \vec S\cdot\hat r}} {{r^2 }}} \right] $$
(1)
where
$$ \vec \Lambda = \vec r \times \left( {\vec p - Q\vec A\left( {\vec r} \right)} \right) - \nu \hat r $$
(2)
is orbital plus field angular momentum, with eigenvalues \( \lambda = \nu ,\nu + 1, \ldots ;\vec A \) is the vector potential of the monopole’s field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Charles J. Goebel
    • 1
  1. 1.Department of PhysicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations