Advertisement

Monopole ’83 pp 239-249 | Cite as

Monopole Catalyzed Nucleon Decay: The Astrophysical Connection

  • Edward W. Kolb
Part of the NATO ASI Series book series (NSSB, volume 111)

Abstract

If monopoles catalyze nucleon decay, limits on the product of the monopole flux and the catalysis cross section may be placed from “astrophysical” considerations. We review these limits and discuss their reliability.

Keywords

Neutron Star White Dwarf Neutrino Emission Nucleon Density Total Luminosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Callan, in this volume, and references therein.Google Scholar
  2. 2.
    V.A. Rubakov, Nucl. Phys. B203, 311 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    Recently Goldhaber (A.S. Goldhaber, in proceedings of the 4th Workshop on Grand Unification) has suggested that monopole catalyzed decay is more complicated than Eq. (1) indicates. He has discussed the possibility that the reaction proceeds through a metastable state, and although the cross section might be large, the catalysis rate might be small.Google Scholar
  4. 4.
    For a review of neutron star properties, see G. Baym and C. Pethick, Ann. Rev. Ast. and Astro. 17, 415 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    J. Arafune and M. Fukugita, Phys. Rev. Lett. 50, 1901 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Harvey, in this volume.Google Scholar
  7. 7.
    For monopoles of mass ≳ 1016 GeV, the ratio of the gravitational force to the magnetic force at the surface of the neutron star is much greater than one. This prevents magnetic deflection of the incident monopole.Google Scholar
  8. 8.
    Assuming the only energy loss mechanism is through catalysis, Bais, et al. [F.A. Bais, J. Ellis, D.V. Nanopoulos, and K. Olive, Nucl. Phys. B219, 189 (1983)] have shown that it is possible for the monopole to pass through the neutron star. However I don’t think it is reasonable to assume the only energy loss mechanism is via catalysis.ADSCrossRefGoogle Scholar
  9. 9.
    J. Ostriker, M. Rees, J. Silk, Ast. Lett, 6, 179 (1970).ADSGoogle Scholar
  10. D. Lamb, F. Lamb, D. Pines, Nature 246, 52 (1973).ADSCrossRefGoogle Scholar
  11. J. Hills, Ap. J. 219, 550 (1978).ADSCrossRefGoogle Scholar
  12. 10.
    J.T. Stocke, et al., Ap. J. 273, 458 (1983).ADSCrossRefGoogle Scholar
  13. 11.
    E.W. Kolb, S.A. Colgate, J.A. Harvey, Phys. Rev. Lett. 49, 1373 (1982).ADSCrossRefGoogle Scholar
  14. 12.
    F.A. Cordova, E.W. Kolb, D.L. Tubbs, HEAO-2 Guest Investigator Proposal.Google Scholar
  15. 13.
    S. Dimopoulos, J. Preskill, F. Wilczek, Phys. Lett. 119B, 320 (1982).ADSGoogle Scholar
  16. 14.
    D. McCammon, D.N. Burrows, W.T. Sanders, W.L. Kraushaar, Ap. J. 269, 107 (1983).ADSCrossRefGoogle Scholar
  17. 15.
    E.W. Kolb and M.S. Turner, Fermilab report (1983).Google Scholar
  18. 16.
    References to the original papers for the different equations of state may be found in K.A Van Riper and D.Q. Lamb, Ap. J. 244, L13 (1981) for πa, PS, and BPS.Google Scholar
  19. M.B. Richardson, et al., Ap. J. 255, 624 (1982) for πb; and.ADSCrossRefGoogle Scholar
  20. S. Tsuruta in Canadian Journal of Physics 44, 1863 (1966) for I, II, IIB, III.ADSCrossRefGoogle Scholar
  21. 17.
    K.A. Olive and D.N. Schramm, Phys. Lett. 130B, 267 (1983).ADSGoogle Scholar
  22. 18.
    K. Freese, M.S. Turner, and D.N. Schramm, Phys. Rev. Lett. 51, 1625 (1983).ADSCrossRefGoogle Scholar
  23. 19.
    A recent determination of the distance to PSR 1929+10 (≈250 pc) was made by D.C. Backer and R.A. Sramek, Ap. J. 260, 512 (1982). The distance determination is uncertain, and a good guess might be 100±100 pc.ADSCrossRefGoogle Scholar
  24. 20.
    This has been suggested by Bais et al. (Ref. 8) and Freese, Turner, and Schramm (Ref. 18).Google Scholar
  25. 21.
    K. Freese and R. Kron, University of Chicago preprint (1983).Google Scholar
  26. 22.
    For a review of White Dwarfs, see J. Liebert, Ann. Rev. Ast. and Astrophys. 18, 363 (1980).ADSCrossRefGoogle Scholar
  27. 23.
    M.S. Turner, Nature 302, 804 (1983).ADSCrossRefGoogle Scholar
  28. 24.
    S. Ahlen and K. Kinoshita, Phys. Rev. D26, 2347 (1982).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Edward W. Kolb
    • 1
  1. 1.Theoretical Astrophysics GroupFermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations