Advertisement

Monopole ’83 pp 107-116 | Cite as

Primordial Inflation and the Monopole Problem

  • Keith A. Olive
  • David Seckel
Part of the NATO ASI Series book series (NSSB, volume 111)

Abstract

We discuss the cosmological abundance of magnetic monopoles in locally supersymmetric GUTs and primordial inflation. Depending on the temperature scale of the GUT phase transition (Λ5 in this model) monopoles may or may not be suppressed sufficiently to satisfy cosmological and astrophysical limits. For example, if the GUT transition occurs after inflation (Λ5 < TH ∼ 0 (1010− 1011 GeV), where TH is the temperature at which inflation occurs) too many monopoles will be produced unless Λ5 < 109 GeV. Even then, although the cosmological density limits are satisfied, neutron star limits on the monopole abundance may rule this situation out. If on the other hand Λ5 > TH, SU(5) breaking may occur during inflation and hence the monopole abundance is greatly suppressed as it was in non-primordial inflation. We show that both scenarios are possible with the latter (Λ5 > TH) being preferred for monopole suppression.

Keywords

Hubble Parameter Grand Unify Theory Magnetic Monopole Supersymmetry Breaking Scale Galactic Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.D. Sakharov, ZhETF Pis’ma 5, 32 (1967).ADSGoogle Scholar
  2. 2.
    A.H. Guth, Phys. Rev. D 23, 347 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    G. ’t Hooft, Nucl. Phys. B 79, 276 (1974).MathSciNetADSCrossRefGoogle Scholar
  4. A.M. Polyakov, Zh. Eksp. Teor. Fiz. 20, 430 (1974).Google Scholar
  5. A.M. Polyakov, JETP Lett. 20, 194 (1974); E.J. Weinberg, these proceedings.ADSGoogle Scholar
  6. 4.
    A.D. Linde, Phys. Lett 108B, 389 (1982).MathSciNetADSGoogle Scholar
  7. A. Albrecht and P.J. Steinhardt, Phys. Rev. Lett 48, 1220 (1982); for a review see: A.D. Linde, P.N. Lebedev, Physical Institute preprint Nos. 30 and 50, to be published in The Very Early Universe, ed. by S.W. Hawking, G.W. Gibbons, and S. Siklos (1983).ADSCrossRefGoogle Scholar
  8. 5.
    P.J. Steinhardt, these proceedings.Google Scholar
  9. 6.
    Ya.B. Zel’dovich and M.Y. Khlopov, Phys. Lett 79B, 239 (1978).ADSGoogle Scholar
  10. J.P. Preskill, Phys. Rev. Lett 43, 1365 (1979).ADSCrossRefGoogle Scholar
  11. D.A. Dicus, D.N. Page, and V.L. Teplitz, Phys. Rev. D 26, 1306 (1982).ADSCrossRefGoogle Scholar
  12. 7.
    J. Ellis, D.V. Nanopoulos, K.A. Olive, and K. Tamvakis, Phys. Lett. 118B, 335 (1982).ADSGoogle Scholar
  13. 7.
    J. Ellis, D.V. Nanopoulos, K.A. Olive, and K. Tamvakis, Nucl. Phys. B 221, 524 (1983).ADSCrossRefGoogle Scholar
  14. 7.
    J. Ellis, D.V. Nanopoulos, K.A. Olive, and K. Tamvakis, Phys. Lett. 120B, 331 (1983).ADSGoogle Scholar
  15. 8.
    D.V. Nanopoulos, K.A. Olive, M. Srednicki, and K. Tamvakis, Phys. Lett. 123B, 41 (1983).MathSciNetADSGoogle Scholar
  16. G.B. Gelmini, D.V. Nanopoulos, and K.A. Olive, CERN preprint TH. 3629, Phys. Lett. B (in press) (1983).Google Scholar
  17. 9.
    D.V. Nanopoulos, K.A. Olive, and M. Srednicki, Phys. Lett 127B, 30 (1983).MathSciNetADSGoogle Scholar
  18. see also, K.A. Olive, CERN preprint TH. 3587 to be published in the Proc. of the 3rd Moriond Astrophysics Meeting, ed. by J. Audouze and J. Tran Thanh Van (1983).Google Scholar
  19. 10.
    A.D. Linde, P.N. Lebedev, Physical Institute preprints No. 151 and “Inflation Can Break Symmetry in SUSY” (1983).Google Scholar
  20. 11.
    T. Goldman, E.W. Kolb, and D. Toussaint, Phys. Rev. D 23, 867 (1981).ADSCrossRefGoogle Scholar
  21. D.A. Dicus, D.N. Page, and V.L. Teplitz, Phys. Rev. D 26, 1306 (1982).ADSCrossRefGoogle Scholar
  22. 12.
    A.H. Guth and Si H.H. Tye, Phys. Rev. Lett. 44, 631, 963 (1980).ADSCrossRefGoogle Scholar
  23. M.B. Einhorn, D.L. Stein and D. Toussaint, Phys. Rev. D 21, 3295 (1980).MathSciNetADSCrossRefGoogle Scholar
  24. F.A. Bais and S. Rudaz, Nucl. Phys. B 170 [F51], 507 (1980).ADSCrossRefGoogle Scholar
  25. A.H. Guth and E.J. Weinberg, Phys. Rev. D 23, 876 (1981).ADSCrossRefGoogle Scholar
  26. M.B. Einhorn and K. Sato, Nucl. Phys. B 180 [F52], 385 (1981).ADSCrossRefGoogle Scholar
  27. G. Lazarides, Q. Shafi and T.F. Walsh, Phys. Lett. 100B, 21 (1981).ADSGoogle Scholar
  28. 13.
    E.J. Weinberg, private communication (1983).Google Scholar
  29. 14.
    P. Langacker and S.-Y. Pi, Phys. Rev. Lett. 45, 1 (1980).ADSCrossRefGoogle Scholar
  30. E.J. Weinberg, Phys. Lett. 126B, 441 (1983).MathSciNetADSGoogle Scholar
  31. 15.
    K. Freese and D.N. Schramm, submitted to Nucl. Phys. B (1983), EFI preprint 83-22.Google Scholar
  32. 16.
    E.N. Parker, these proceedings.Google Scholar
  33. 17.
    E.W. Kolb, these proceedings.Google Scholar
  34. 18.
    V.A. Rubakov, Zh. Eksp. Teor. Fiz Pis’ma Red. 33, 6658 (1981).Google Scholar
  35. V.A. Rubakov, JETP Lett. 33, 644 (1981).ADSGoogle Scholar
  36. V.A. Rubakov, Nucl. Phys. B 203, 311 (1982).ADSCrossRefGoogle Scholar
  37. C.G. Callan, Phys. Rev. D 25, 2141 (1982).ADSCrossRefGoogle Scholar
  38. C.G. Callan, Nucl. Phys. B 212, 391 (1983), and these proceedings.ADSCrossRefGoogle Scholar
  39. 19.
    S.W. Hawking, Phys. Lett. 115B, 295 (1982).ADSGoogle Scholar
  40. A.A. Starobinskii, Phys. Lett. 117B, 175 (1982).ADSGoogle Scholar
  41. A.H. Guth and S.-Y. Pi, Phys. Rev. Lett 49, 1110 (1982).ADSCrossRefGoogle Scholar
  42. J. Bardeen, P.J. Steinhardt, M.S. Turner, Phys. Rev. D 28, 679 (1983).ADSCrossRefGoogle Scholar
  43. 20.
    D.V. Nanopoulos, K.A. Olive, M. Srednicki, and K. Tamvakis, Phys. Lett. 124B, 171 (1983).MathSciNetADSGoogle Scholar
  44. 21.
    J. Polonyi, Budapest preprint KFKI-1977-93 (1977).Google Scholar
  45. 22.
    G.D. Coughlan, W. Fischler, E. Kolb, S. Raby and G.G. Ross, Los Alamos preprint LA-UR 83-1423 (1983).Google Scholar
  46. 23.
    M. Dine, W. Fischler, and D. Nemeschansky, preprint (1983).Google Scholar
  47. 24.
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. Van Nieuwenhuizen, Nucl. Phys. B 147, 105 (1979).ADSCrossRefGoogle Scholar
  48. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Phys. Lett. 116B, 231 (1982).ADSGoogle Scholar
  49. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Nucl. Phys. B 212, 413 (1983).ADSCrossRefGoogle Scholar
  50. 25.
    B.A. Ovrut and P.J. Steinhardt, Rockefeller University preprint RU 83/B/65.Google Scholar
  51. 26.
    M. Srednicki, Nucl. Phys. B 202, 327 (1982).ADSCrossRefGoogle Scholar
  52. D.V. Nanopoulos, and K. Tamvakis, Phys. Lett. 110B, 449 (1982).ADSGoogle Scholar
  53. 27.
    D.V. Nanopoulos, K.A. Olive, and K. Tamvakis, Phys. Lett. 115B, 15 (1982).ADSGoogle Scholar
  54. 28.
    M. Srednicki, Nucl. Phys. B 206, 132 (1982).ADSCrossRefGoogle Scholar
  55. 29.
    T.S. Burch and P.C.W. Davies, Proc. R. Soc. London A 360, 117 (1978).ADSCrossRefGoogle Scholar
  56. A. Vilenkin, Phys. Lett. 115B, 91 (1982).ADSGoogle Scholar
  57. A. Vilenkin and L.H. Ford, Phys. Rev. D 26, 1231 (1982).MathSciNetADSCrossRefGoogle Scholar
  58. A. D. Linde, Phys. Lett. 116B, 335 (1982).MathSciNetADSGoogle Scholar
  59. A. A. Starobinskii, Phys. Lett. 117B, 175 (1982).ADSGoogle Scholar
  60. 30.
    We thank M. Srednicki for bringing this to our attention.Google Scholar
  61. 31.
    C. Kounnas, J. Leon, and M. Quiros, CERN preprint TH. 3554 (1983).Google Scholar
  62. C. Kounnas, D.V. Nanopoulos, and M. Quiros, CERN preprint TH. 3573 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Keith A. Olive
    • 1
  • David Seckel
    • 1
  1. 1.Theoretical Astrophysics GroupFermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations