Superheavy Magnetic Monopoles and the Standard Cosmology

  • Michael S. Turner
Part of the NATO ASI Series book series (NSSB, volume 111)


The superheavy magnetic monopoles predicted to exist in grand unified theories (GUTs) are very interesting objects, both from the point of view of particle physics, as well as from astrophysics and cosmology. Astrophysical and cosmological considerations have proved to be invaluable in studying the properties of GUT monopoles. Because of the glut of monopoles predicted in the standard cosmology for the simplest GUTs (so many that the Universe should have reached a temperature of 3 K at the tender age of ≃ 10,000 yrs), the simplest GUTs and the standard cosmology are not compatible. This is a very important piece of information about physics at unification energies (E ≳ 1014 GeV) and about the earliest moments (t ≲ 10−34 s) of the Universe. In this talk I review the cosmological consequences of GUT monopoles within the context of the standard hot big bang model.


Neutron Star Magnetic Charge Grand Unify Theory Higgs Field Standard Cosmology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.W. Kolb and M.S. Turner, Ann. Rev. Nucl. Part. Sci. 33, 645 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    E.N. Parker, Astrophys. J. 160, 383 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    G. Lazarides, Q. Shafi, and T. Walsh, Phys. Lett. 100B, 21 (1981).ADSGoogle Scholar
  4. 4.
    M.S. Turner, E.N. Parker, and T.J. Bogdan, Phys. Rev. D26, 1296 (1982).ADSGoogle Scholar
  5. 5.
    Y. Rephaeli and M.S. Turner, Phys. Lett. 121B, 115 (1983).ADSGoogle Scholar
  6. 6.
    E.W. Kolb, S. Colgate, and J. Harvey, Phys. Rev. Lett. 49, 1373 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    S. Diraopoulos, J. Preskill, and F. Wilczek, Phys. Lett. 119B, 320 (1982).ADSGoogle Scholar
  8. 8.
    K. Freese, M.S. Turner, and D.N. Schramm, Phys. Rev. Lett. 51, 1625 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    F. Bais, J. Ellis, D.V. Nanopoulos, and K.A. Olive, Nucl. Phys. B219, 189 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    T. Walsh, in Proceedings of the XXIIth Intl. Conference on High Energy Physics (Paris, 1982).Google Scholar
  11. 11.
    E.W. Kolb and M.S. Turner, Astrophys. J., in press (1984).Google Scholar
  12. 12.
    For a more detailed description of the standard cosmology, see, e.g., S. Weinberg, Gravtiation and Cosmology (Wiley: NY, 1972), chapter 15.Google Scholar
  13. 13.
    J. Yang, M.S. Turner, G. Steigman, D.N. Schramm, and K.A. Olive, Astrophys. J., in press (1984).Google Scholar
  14. 14.
    P.A.M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931).ADSGoogle Scholar
  15. 15.
    G. ’t Hooft, Nucl. Phys. B79, 276 (1974).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    A.M. Polyakov, JETP Lett. 20, 194 (1974).ADSGoogle Scholar
  17. 17.
    T.W.B. Kibble, J. Phys. A9, 1387 (1976).ADSGoogle Scholar
  18. 18.
    J. Preskill, Phys. Rev. Lett. 43, 1365 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    Ya.B. Zel’dovich and M. Yu Khlopov, Phys. Lett. 79B, 239 (1978).ADSGoogle Scholar
  20. 20.
    M.B. Einhorn, D.L. Stein, and D. Toussaint, Phys. Rev. D21, 3295 (1980).MathSciNetADSGoogle Scholar
  21. 21.
    A.H. Guth and E. Weinberg, Nucl. Phys. B212, 321 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    J.A. Harvey and E.W. Kolb, Phys. Rev. D24, 2090 (1981).ADSGoogle Scholar
  23. 23.
    T. Goldman, E.W. Kolb, and D. Toussaint, Phys. Rev. D23, 867 (1981).ADSGoogle Scholar
  24. 24.
    J. Fry, Astrophys. J. 246, 193 (1981).CrossRefGoogle Scholar
  25. 25.
    J. Fry and G. Fuller, Univ. of Chicago preprint (1983).Google Scholar
  26. 26.
    D.A. Dicus, D.N. Page, and V.L. Teplitz, Phys. Rev. D26, 1306 (1982).ADSGoogle Scholar
  27. 27.
    F. Bais and S. Rudaz, Nucl. Phys. B170, 507 (1980).ADSCrossRefGoogle Scholar
  28. 28.
    A. Linde, Phys. Lett. 96B, 293 (1980).ADSGoogle Scholar
  29. 29.
    G. Lazarides and Q. Shafi, Phys. Lett. 94B, 149 (1980).MathSciNetADSGoogle Scholar
  30. 30.
    P. Langacker and S.-Y. Pi, Phys. Rev. Lett. 45, 1 (1980).ADSCrossRefGoogle Scholar
  31. 31.
    E. Weinberg, Phys. Lett. 126B, 441 (1983).MathSciNetADSGoogle Scholar
  32. 32.
    A. Vilenkin, Tufts Univ. preprint (1983).Google Scholar
  33. 33.
    K. Lee and E. Weinberg, Columbia Univ. preprint (1984).Google Scholar
  34. 34.
    M.S. Turner, Phys. Lett. 115B, 95 (1982).ADSGoogle Scholar
  35. 35.
    G. Lazarides, Q. Shafi, and W.P. Trower, Phys. Rev. Lett. 49, 1756 (1982).ADSCrossRefGoogle Scholar
  36. 36.
    J. Preskill, in The Very Early Universe, eds. G.W. Gibbons, S.W. Hawking, S. Siklos (Cambridge Univ. Press, Cambridge 1983).Google Scholar
  37. 37.
    W. Collins and M.S. Turner, Phys. Rev. D, in press (1984).Google Scholar
  38. 38.
    A. Goldhaber and A. Guth, in preparation (1984).Google Scholar
  39. 39.
    J.P. Vallee, Astrophys. Lett. 23, 85 (1983).ADSGoogle Scholar
  40. 40.
    K. Freese, J. Frieman, and M.S. Turner, Univ. of Chicago preprint (1984).Google Scholar
  41. 41.
    M.S. Turner, Nature 302, 804 (1983).ADSCrossRefGoogle Scholar
  42. 42.
    M.S. Turner, Nature 306, 161 (1983).ADSCrossRefGoogle Scholar
  43. 43.
    The Parker bound can be evaded if monopoles play a role in the generation of the galactic magnetic field (e.g. by magnetic plasma oscillations). see Ref. 4; J. Arons and R. Blandford, Phys. Rev. Lett, 50, 544 (1983). orADSCrossRefGoogle Scholar
  44. E. Salpeter, S. Shapiro, and I. Wasserman, Phys. Rev. 49, 1114 (1982). In order for this mechanism to work, the phase velocity of the plasma oscillations must be greater than the gravitational velocity dispersion of the monopoles ≃ 10−3 c (otherwise Landau damping will rapidly damp the oscillations). This results in a lower bound to the monopole flux: FM ≳ 1/4 mMvgrav 3 (gl)−2 ≃10−12 (mM/1016 GeV)cm−2 sr−1 s−1; here g ≃ 69e is the monopole’s magnetic charge, 1 ≃ 300 pc is the characteristic length scale of the galactic B-field, and v grav ≃ 10−3 c. For mM ≳ 1018 GeV the monopole density required is inconsistent with the mass density density of the galaxy (see Fig. 1). I believe that this scenario is very unlikely; in addition, it is becoming observationally untenable because of the large monopole flux that it predicts.ADSGoogle Scholar
  45. 44.
    S. Dimopoulos, S. Glashow, E. Purcell, and F. Wilczek, Nature 298, 824 (1982).ADSCrossRefGoogle Scholar
  46. 45.
    K. Freese and M.S. Turner, Phys. Lett 123B, 293 (1983).ADSGoogle Scholar
  47. 46.
    P. Langacker, Phys. Rep. 72, 185 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Michael S. Turner
    • 1
    • 2
  1. 1.Theoretical Astrophysics GroupFermi National Accelerator LaboratoryBataviaUSA
  2. 2.Enrico Fermi InstituteThe University of ChicagoChicagoUSA

Personalised recommendations