Monopoles and Grand Unification

  • Erick J. Weinberg
Part of the NATO ASI Series book series (NSSB, volume 111)


The study of magnetic monopoles may be divided into four eras. In the first, monopoles were unobserved objects whose existence was merely an interesting possibility. The second period began in 1931 with Dirac’s1 observation that the existence of a magnetic monopole would explain the observed quantization of electric charge. A third era was entered when it was realized that electric charge is naturally quantized in unified theories, where electromagnetism is imbedded in a spontaneously broken gauge theory based on a compact semi-simple group; monopoles did not appear to be needed. Finally, a fourth era began in 1974 with the realization2 that such unified theories imply the existence of magnetic monopoles and that these monopoles have calculable properties. Before proceeding further, it may be useful to recall why, aside from the question of monopoles, certain of these unified theories have come to be of particular interest.


Symmetry Breaking Magnetic Charge Topological Charge Homotopy Group Proton Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A.M. Dirac, Proc. Roy. Soc. A133, 60 (1931).ADSGoogle Scholar
  2. 2.
    G. ’t Hooft, Nucl. Phys. B79, 276 (1974).MathSciNetADSCrossRefGoogle Scholar
  3. A.M. Polyakov, JETP Lett. 20, 194 (1974).ADSGoogle Scholar
  4. 3.
    P. Langacker, Phys. Rep. 72, 185 (1981).ADSCrossRefGoogle Scholar
  5. 4.
    H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974).ADSCrossRefGoogle Scholar
  6. 5.
    R. Bionta et al., Phys. Rev. Lett. 51, 27 (1983).ADSCrossRefGoogle Scholar
  7. J. Bartelt et al., Phys. Rev. Lett. 50, 651 (1983).ADSCrossRefGoogle Scholar
  8. G. Battistoni et al., Phys. Lett. 118B, 461 (1982).ADSGoogle Scholar
  9. M. Krishnaswamy et al., Phys. Lett. 115B, 349 (1982).ADSGoogle Scholar
  10. 6.
    Y. Aharonov and D. Böhm, Phys. Rev. 115, 485 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 7.
    F. Englert and P. Windey, Phys. Rev. D14, 2728 (1976).MathSciNetADSGoogle Scholar
  12. P. Goddard, J. Nuyts, and D. Olive, Nucl. Phys. B125, 1 (1977).MathSciNetADSCrossRefGoogle Scholar
  13. 8.
    R. Brandt and F. Neri, Nucl. Phys. B161, 253 (1979).ADSCrossRefGoogle Scholar
  14. S. Coleman, “The Magnetic Monopole Fifty Years Later,” in The Unity of the Fundamental Interactions, ed., A. Zichichi, (Plenum, 1983).Google Scholar
  15. 9.
    M. Prasad and C. Sommerfield, Phys. Rev. Lett. 35, 760 (1975).ADSCrossRefGoogle Scholar
  16. 10.
    T. Kirkman and C. Zachos, Phys. Rev. D24, 999 (1981).ADSGoogle Scholar
  17. 11.
    E. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 (1976).MathSciNetGoogle Scholar
  18. S. Coleman, S. Parke, A. Neveu, and C. Sommerfield, Phys. Rev. D15, 544 (1977).ADSGoogle Scholar
  19. 12.
    S. Coleman, “Classical Lumps and Their Quantum Descendents,” in New Phenomena in Subnuclear Physics, ed., A. Zichichi, (Plenum, 1977).Google Scholar
  20. 13.
    R. Ward, Comm. Math. Phys. 80, 563 (1981).MathSciNetADSCrossRefGoogle Scholar
  21. R. Ward, Phys. Lett. B102, 136 (1981).ADSGoogle Scholar
  22. P. Forgacs, Z. Horvath, and L. Palla, Phys. Lett. 99B, 239 (1981).MathSciNetADSGoogle Scholar
  23. 14.
    J. Kim, Phys. Rev. D23, 2706 (1981).ADSGoogle Scholar
  24. 15.
    D. Wilkinson and A. Goldhaber, Phys. Rev. D16, 1221 (1977).ADSGoogle Scholar
  25. 16.
    C. Dokos and T. Tomaras, Phys. Rev. D21, 2940 (1980).ADSGoogle Scholar
  26. 17.
    A. Schellekens and C. Zachos, Phys. Rev. Lett. 50, 1242 (1983).ADSCrossRefGoogle Scholar
  27. P. Eckert, D. Altschüler, T. Schücker, and G. Wanner, Univ. of Geneva preprint UGVA-DPT 1983/03-383 (1983).Google Scholar
  28. P. Eckert, D. Altschüler, and T. Schucker, Univ. of Geneva preprint UGVA-DPT 1983/07-402 (1983).Google Scholar
  29. 18.
    C. Gardner and J. Harvey, Princeton University preprint (1983).Google Scholar
  30. 19.
    V. Rubakov, JETP Lett. 33, 644 (1981).ADSGoogle Scholar
  31. V. Rubakov, Nucl. Phys. B203, 311 (1982).ADSCrossRefGoogle Scholar
  32. C. Callan, Phys. Rev. D25, 2141 (1982).ADSGoogle Scholar
  33. C. Callan, Phys. Rev. D26, 2058 (1982).ADSGoogle Scholar
  34. 20.
    G. Lazarides and Q. Shafi, Phys. Lett. 94B, 149 (1980).MathSciNetADSGoogle Scholar
  35. G. Lazarides, M. Magg, and Q. Shafi, Phys. Lett. 97B, 87 (1980).ADSGoogle Scholar
  36. 21.
    F.A. Bais, Phys. Lett. 98B, 437 (1981).MathSciNetADSGoogle Scholar
  37. E. Weinberg, D. London, and J. Rosner, Univ. of Chicago preprint EFI83-39 (1983).Google Scholar
  38. 22.
    S. Dawson and A. Schellekens, Phys. Rev. D27, 2119 (1983).ADSGoogle Scholar
  39. 23.
    F. Wilczek, Phys. Rev. Lett. 48, 1146 (1982).MathSciNetADSCrossRefGoogle Scholar
  40. 24.
    H. Georgi and D. Nanopoulos, Nucl. Phys. B159, 16 (1979).ADSCrossRefGoogle Scholar
  41. S. Dawson and H. Georgi, Nucl. Phys. B179, 477 (1981).ADSCrossRefGoogle Scholar
  42. R. Robinett and J. Rosner, Phys. Rev. D26, 2396 (1982).ADSGoogle Scholar
  43. N. Deshpande and R. Johnson, Phys. Rev. D27, 1165, 1193 (1983).ADSGoogle Scholar
  44. 25.
    T. Rizzo and G. Senjanovic, Phys. Rev. Lett. 46, 1315 (1981).ADSCrossRefGoogle Scholar
  45. T. Rizzo and G. Senjanovic, Phys. Rev. D24, 704 (1981).ADSGoogle Scholar
  46. T. Rizzo and G. Senjanovic, Phys. Rev. D25, 235 (1982).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Erick J. Weinberg
    • 1
  1. 1.Department of PhysicsColumbia UniversityNew YorkUSA

Personalised recommendations