e+e Physics at CESR

  • Paolo Franzini
Part of the NATO ASI Series book series (NSSB, volume 126)


The study of high energy electron positron interactions has, in the past decade, provided us with a wealth of experimental information about all aspects of particle physics. The charmed quark, or c-quark, was simultaneously discovered in hadron interactions and in e+e annihilations. It was however mostly at e+e colliders that its properties were (and still are) investigated. The measurements of the annihilation cross section into hadrons has given tangible evidence about the existence of color and the continued study of these processes at high energies has confirmed many qualitative predictions of Quantum Chromo Dynamics (QCD), the best candidate at present for a complete theory of the strong interactions. The discovery, in hadron collisions, of the upsilons in 1978, required the existence of yet another quark, the b-quark, where b stands sometimes for beauty or bottom, a new flavor of quarks. Because of its large mass, ∿ 5 GeV, the b quark has greatly helped in clarifying many aspects of strong interactions, especially in the spectroscopy of heavy particles. The study of the b quark, carried out only at electron positron colliders, has given new proofs that quarks carry color and fractional charge (1/3e for the b quark) and that gluons exist, have spin 1 and carry color, as required by QCD. In the field of weak interactions further proof of the validity of the “standard model” has been obtained and strong constraints on the mixing angles have been established. In the last three years most of the study of the b quark has been carried out at the Cornell Electron Storage Ring, CESR, because of a fortunate set of circumstances. In these lectures I will present what we have learned from this study at CESR [1], where the focus has been and continues to be on the T resonances [2,3], from which we learn about heavy quark spectroscopy, and on the weak interactions of the b-quark, through the study of B-meson properties.


Decay Chain Quantum Chromo Dynamics Branch Ratio Meson Decay Thrust Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Franzini and J. Lee-Franzini, Phys. Rep. 81 (1982) 239.ADSCrossRefGoogle Scholar
  2. 2.
    P. Franzini and J. Lee-Franzini, Ann. Rev. Nucl. Part. Sci. 33 (1983) 1.ADSCrossRefGoogle Scholar
  3. 3.
    K. Berkelman, to be published in Phys. Rep, (1983).Google Scholar
  4. 3a.
    D. Andrews et al., Nucl. Inst. Meth. 211 (1983) 47.CrossRefGoogle Scholar
  5. 4.
    T. Böhringer et al., Phys. Rev. Lett. 44 (1981) 1111.CrossRefGoogle Scholar
  6. 5.
    D. Andrews et al., Phys. Rev. Lett. 44 (1981) 1108.ADSCrossRefGoogle Scholar
  7. 6.
    S. W. Herb et al., Phys. Rev. Lett. 39 (1977) 252.MathSciNetADSCrossRefGoogle Scholar
  8. K. Ueno et al., Phys. Rev. Lett. 42 (1979) 486.ADSCrossRefGoogle Scholar
  9. 7.
    Ch. Berger et al., Phys. Lett. 76B (1978) 243.ADSGoogle Scholar
  10. Ch. Berger et al., Phys. Lett. 78B (1978) 176.ADSGoogle Scholar
  11. C. W. Darden et al., Phys. Lett. 76B (1978) 246.ADSGoogle Scholar
  12. C. W. Darden et al., Phys. Lett. 78B (1978) 364.ADSGoogle Scholar
  13. J. K. Bienlein et al., Phys. Lett. 78B (1978) 360.ADSGoogle Scholar
  14. 8.
    A. S. Artamonov et al. Phys. Lett. 118B (1982) 225.ADSGoogle Scholar
  15. 9.
    W. W. MacKay et al., to be published, (1983).Google Scholar
  16. 10.
    D. Andrews et al., Phys. Rev. Lett. 45 (1980) 1108.ADSCrossRefGoogle Scholar
  17. G. Finocchiaro et al., ibid. p. 1111.Google Scholar
  18. 11.
    R. M. Barnett et al., Phys. Rev. D22 (1980) 594.ADSGoogle Scholar
  19. 12.
    J. M. Blatt and V. F. Weiskopf, Theoretical Nuclear Physics (J. Wiley, New York, 1952) p. 423.MATHGoogle Scholar
  20. 13.
    E. Eichten et al., Phys. Rev. D17 (1978) 3090.ADSGoogle Scholar
  21. E. Eichten et al., Phys. Rev. D21 (1980) 203.ADSGoogle Scholar
  22. 14.
    K. H. Krasemann and S. Ono, Nucl. Phys. B154 (1979) 283.ADSCrossRefGoogle Scholar
  23. 15.
    W. Büchmuller et al., Phys. Rev. Lett. 45 (1980) 103, 587(E).ADSCrossRefGoogle Scholar
  24. W. Büchmuller and S.-H. H. Tye, Phys. Rev. D24 (1981) 132.ADSGoogle Scholar
  25. 16.
    A. Martin, Phys. Lett. 93B (1980) 338.ADSGoogle Scholar
  26. A. Martin, Phys. Lett. 100B (1981) 511.ADSGoogle Scholar
  27. 17.
    C. Quigg and J. L. Rosner, Phys. Rep. 56 (1979) 167.MathSciNetADSCrossRefGoogle Scholar
  28. 18.
    T. Appelquist and H. D. Politzer, Phys. Rev. Lett. 34 (1975) 43.ADSCrossRefGoogle Scholar
  29. 19.
    K. Koller and T. F. Walsh, Nucl. Phys. B140 (1978) 449.ADSCrossRefGoogle Scholar
  30. 20.
    K. Koller and K. H. Krasemann, Phys. Lett. 88B (1979) 119.ADSGoogle Scholar
  31. 21.
    D. Peterson et al., Phys. Lett. 114B (1982) 277.ADSGoogle Scholar
  32. 22.
    G. Mageras et al., Phys. Rev. Lett. 46 (1981) 1115.ADSCrossRefGoogle Scholar
  33. J. Mueller et al., Phys. Rev. Lett. 46 (1981) 1181.ADSCrossRefGoogle Scholar
  34. 23.
    K. Gottfried, in Proc. Int. Symp. on Lepton and Photon Interactions at High Energy, Hamburg 1977, Ed. F. Gutbrod (DESY, Hamburg).Google Scholar
  35. 24.
    G. Mageras et al., Phys. Lett. 118B (1982) 453.ADSGoogle Scholar
  36. J. Green et al., Phys. Rev. Lett. 49 (1982) 617.ADSCrossRefGoogle Scholar
  37. 25.
    Y.-P. Kuang and T.-M. Yan, Phys. Rev. D24 (1981) 2874.ADSGoogle Scholar
  38. T.-M. Yan, Phys. Rev. D22 (1980) 1652.ADSGoogle Scholar
  39. 26.
    R. Barbieri, R. Gatto and R. Kögler, Phys. Lett. 60B (1976) 183.ADSGoogle Scholar
  40. R. Barbieri, R. Gatto and E. Remiddi, Phys. Lett. 61B (1976) 465.ADSGoogle Scholar
  41. 27.
    C. Klopfenstein et al., Phys. Rev. Lett. 51 (1983) 160.ADSCrossRefGoogle Scholar
  42. 28.
    K. Han et al., Phys. Rev. Lett. 49 (1982) 1612.ADSCrossRefGoogle Scholar
  43. 29.
    F. Pauss et al., Phys. Lett., (1983) in print.Google Scholar
  44. 30.
    G. Eigen et al., Phys. Rev. Lett. 49 (1982) 1616.ADSCrossRefGoogle Scholar
  45. 31.
    M. Chanowitz, Phys. Rev. D12 (1975) 918.ADSGoogle Scholar
  46. 32.
    W. Büchmuller, in Proc. Moriond Workshop on New Flavors, ed. J. Tran Thanh Van, L. Montanet, Gif-sur-Ivette, Editions Frontière (1982) p. 91.Google Scholar
  47. 33.
    C. Quigg and J. L. Rosner, Phys. Rev. D23 (1981) 2625.ADSGoogle Scholar
  48. C. Quigg, H. B. Thacker and J. L. Rosner, Phys. Rev. D21 (1980) 234.ADSGoogle Scholar
  49. 34.
    K. H. Kraseman, CERN rep. Th. 3036 (1981).Google Scholar
  50. 35.
    S. N. Gupta et al., Phys. Rev. D26 (1982) 3305.ADSGoogle Scholar
  51. 36.
    R. McClary and N. Byers, UCLA Rep. UCLA/82/TEP/12 (1982).Google Scholar
  52. 37.
    M. Voloshin et al., ITEP Rep. ITEP-21 (1980).Google Scholar
  53. 38.
    R. A. Bartelman, CERN Rep. TH-3192 (1981).Google Scholar
  54. 39.
    K. Chadwick et al., Phys. Rev. Lett. 46 (1981) 88.ADSCrossRefGoogle Scholar
  55. 40.
    L. J. Spencer et al. Phys. Rev. Lett. 47 (1981) 771.ADSCrossRefGoogle Scholar
  56. 41.
    E. Eichten, Phys. Rev. D22 (1980) 1819.ADSGoogle Scholar
  57. 42.
    R. D. Schamberger et al., Phys. Rev. D26 (1982) 720.ADSGoogle Scholar
  58. 43.
    S. Behrends et al., Phys. Rev. Lett. 50 (1983) 881.ADSCrossRefGoogle Scholar
  59. 44.
    A. Chen et al., Phys. Rev. Lett. 51 (1983) 634.ADSCrossRefGoogle Scholar
  60. 45.
    M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.ADSCrossRefGoogle Scholar
  61. 46.
    N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.ADSCrossRefGoogle Scholar
  62. 47.
    S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.ADSGoogle Scholar
  63. 48.
    M. K. Gaillard and L. Maiani, in Proc. of the 1979 Cargèse Summer Institute on Quarks and Leptons, Ed. M. Levy et al., Plenum Press, New York, 1979, p. 433.Google Scholar
  64. 49.
    L. Maiani, J. Phys. (Paris) Colloq. 43 (1982) C3–631.CrossRefGoogle Scholar
  65. 50.
    G. L. Kane and M. E. Peskin, Nucl. Phys. B195 (1982) 29.ADSCrossRefGoogle Scholar
  66. 51.
    B. Gittelman, J. Phys. (Paris) Colloq. 43 (1982) C3–110.CrossRefGoogle Scholar
  67. 52.
    H. Georgi and M. Machacek, Phys. Rev. Lett. 43 (1979) 1639.ADSCrossRefGoogle Scholar
  68. E. Derman, Phys. Rev. D19 (1979) 319.ADSGoogle Scholar
  69. R. N. Mohapatra, Phys. Lett. 82B (1979) 101.ADSGoogle Scholar
  70. H. Georgi and S. L. Glashow, Nucl. Phys. B167 (1980) 173.ADSCrossRefGoogle Scholar
  71. 53.
    P. Franzini, J. Phys. (Paris) Colloq. 43 (1982) C3–114.CrossRefGoogle Scholar
  72. 54.
    A. Chen et al., Phys. Lett. 122B (1983) 317.ADSGoogle Scholar
  73. 55.
    C. Klopfenstein, Phys. Lett., in print. (1983).Google Scholar
  74. 56.
    K. Chadwick et al., Phys. Rev. D27 (1983) 317.Google Scholar
  75. 57.
    G. Kalmus, J. Phys. (Paris) Colloq. 43 (1982) C3–431.CrossRefGoogle Scholar
  76. 58.
    J. Leveille, ref. 32, p. 191.Google Scholar
  77. 59.
    G. Altarelli et al., Nucl. Phys. B208 (1982) 365.MathSciNetADSCrossRefGoogle Scholar
  78. 60.
    B. Gittelman and S. Stone, private communication.Google Scholar
  79. 61.
    L. J. Spencer et al., Nucl. Phys. B206 (1982) 1.ADSGoogle Scholar
  80. 62.
    J. Green et al., Phys. Rev. Lett. 51 (1983) 347.ADSCrossRefGoogle Scholar
  81. 63.
    E. Fernandez et al., Preprint SLAC-PUB-3154.Google Scholar
  82. 64.
    N. S. Lockyer et al., Preprint SLAC-PUB 3165 (1983).Google Scholar
  83. 65.
    W. Bartel et al., Phys. Lett. 114B (1982) 71.ADSGoogle Scholar
  84. 66.
    P. H. Ginsparg, S. L. Glashow and M. B. Wise, Phys. Rev. Lett. 50 (1983) 1415.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Paolo Franzini
    • 1
  1. 1.Columbia UniversityUSA

Personalised recommendations