Selected Topics in Non-Accelerator Physics

  • G. Charpak
Part of the NATO ASI Series book series (NSSB, volume 126)


Recent theories in high-energy physics have given rise to speculative predictions; their proof relies on a great variety of experiments, most of which do not require high-energy accelerators.


Neutrino Mass Neutrino Oscillation Magnetic Charge Solar Neutrino Magnetic Monopole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.H. Frampton and P. Vogel, Massive neutrinos, Phys. Rep. 82, (1982) 339.ADSCrossRefGoogle Scholar
  2. 2.
    S.M. Bilenky and B. Pontecorvo, Lepton mixing and neutrino oscillations, Phys. Rep. 404 (1978) 225.ADSCrossRefGoogle Scholar
  3. 3.
    F. Boehm, Status of lepton conservation and neutrino mass, submitted to Surveys, 3 March 1983.Google Scholar
  4. 4.
    D.O. Caldwell, Proc. 1982 Summer Study on Elementary Particle Physics and Future Facilities, Snowmass, Colorado (Amer. Phys. Soc., Division of Particles and Fields, New York, 1983), p. 600.Google Scholar
  5. 5.
    O. Fackler et al. (Rockfeiler University-Fermilab-Lawrence Livermore Lab. Collaboration), An experiment to measure the υe mass, private communication from R. Cool.Google Scholar
  6. 6.
    C.L. Bennett et al., The X-ray spectrum following 163Ho electron capture, Phys. Lett. 107B (1981) 19. This idea was independently conceived by Raghaven in 1980 and stimulated the spec-troscopic program which culminated in the results on 158Tb, to be published (see Ref. 7.).ADSGoogle Scholar
  7. 7.
    R.S. Raghaven (Bell Telephone Lab.), Ultra-low energy K-capture decay of 158Tb: a new neutrino “balance”, to be published.Google Scholar
  8. 8.
    J.U. Andersen et al., A limit on the mass of the electron neutrino: the case of 163Ho, Phys. Lett. 113B (1982) 72.ADSGoogle Scholar
  9. 9.
    A. De Rújula and M. Lusignoli, Calorimetric measurements of 163Ho decay as tools to determine the electron-neutrino mass, Phys. Lett. 118B (1982) 429.ADSGoogle Scholar
  10. 10.
    Proc. 1982 Summer Workshop on Proton Decay Experiments, Argonne, I11. (ANL-HEP-CP 82-24, 1982).Google Scholar
  11. 11.
    J. Bernabeu, A. De Rújula and C. Jarlskog, Neutrinoless double electron capture as a tool to measure the electron-neutrino mass, Nucl. Phys. B223 (1983) 15.ADSCrossRefGoogle Scholar
  12. 12.
    R.M. Bionta et al. (IMB Collaboration), A search for proton decay into e+μ°, submitted to Phys. Rev. Lett., 1983.Google Scholar
  13. 13.
    S. Coleman, The magnetic monopole fifty years later, Harvard preprint HUTP 82/A032 (1982).Google Scholar
  14. 14.
    D.B. Cline, Binding of monopoles in matter and search in large quantities of old iron ore, Invited talk at Wingspread Monopole Workshop, Racine, Wisconsin, October 1982.Google Scholar
  15. 15.
    B. Cabrera, First results from a superconductive detector for moving magnetic monopoles, Phys. Rev. Lett. 48 (1982) 1378.ADSCrossRefGoogle Scholar
  16. 16.
    C. Rubbia, Hunting the supermassive monopole without superconductivity, Int. report CERN-EP/82-01 (1982).Google Scholar
  17. 17.
    S. Drell, N. Kroll, M. Mueller, S. Parker and M. Ruderman, Energy loss of slowly moving magnetic monopoles in matter, Phys. Rev. Lett. 50 (1983) 644.ADSCrossRefGoogle Scholar
  18. 18.
    P. Eberhard, Magnetic monopoles and the galactic magnetic field, LBL, Group A physics note No. 946, 23 July 1982.Google Scholar
  19. M.S. Goodman et al., A sensitive search for neutron-antineutron transitions, Oak Ridge Proposal ORNL/Phys.-82/1 (1982).Google Scholar
  20. 19.
    S. Dimopoulos, S.L. Glashow, E.M. Purcell and F. Wilczek, Magnetic monopoles: A local source?, Harvard preprint HUTP-82/A016 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • G. Charpak
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations