Advertisement

Integrative Rostromedial Diencephalic Neurons are Comodulated by Vasopressin and Angiotensin

  • Anne Catherine Jeulin
  • Stylianos Nicolaïdis
Part of the NATO ASI Series book series (NSSA, volume 105)

Abstract

Although there is little doubt on the duality of the central system controlling drinking and diuresis there are old and new data indicating that both systems are intermingled and share common properties and common neuroendocrine factors. They are intermingled around the rostromedial osomreceptive structures located not only within the supraoptic nucleus (SON) and paraventricular nucleus (PVN)1,2 but also in the surrounding region as shown by osmoactive microinjections3,4,5,6 and electrophysiological techniques outside the above nuclei7,8,9,10,11,12. The involvement of rostral circumventricular organs (CVO) in triggering responses to hydromineral deficiencies was also recognised. Cells in the subfornical organ (SFO) were found to react to extracellular challenges13,14 and to be very sensitive to the dipsogenic action of carbachol15 and angiotensin II (AII)16. The responsiveness of neurons surrounding the organum vasculosum laminae terminalis (OVLT) to hypovolaemic challenges was first revealed in 1970 by extracellular unit recordings17. The same anteroventral periventricular area was shown to be highly sensitive to local application of AII, which triggered drinking more effectively than a similar application to the SFO18,19. The SFO seems to be more important for sensing blood-borne AII whereas the OVLT seems to be more concerned with detecting AII in the cerebrospinal fluid, but both structures initiate drinking, antidiuretic and blood pressure responses. There is considerable controversy at present on the respective roles of these two CVOs on drinking and other regulatory responses, and this is probably because both of them and a number of other intermediary structures form a functional unit, being widely interconnected by means of vascular as well as neural links20,21. Among the numerous rostral interconnected structures we find the classic PV and SO nuclei and also the nucleus medianus. The latter seems to play an important role in the hydromineral regulation since, in an autohistoradiographic study using labelled 2-DG to measure glucose uptake rate in dehydrated rats, it was found to increase its activity to a level comparable to that of the SFO and OVLT22. This finding has been substantiated recently by lesion work. Damage restricted to this nucleus was followed by total abolition of drinking responses to AII23.

Keywords

Medial Preoptic Area Spontaneous Drinking Subfornical Organ Drinking Response Hypertonic NaCI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.A. Cross and J.D. Green, Activity of single neurons in the hypothalamus effect of osmotic and other stimuli. J. Physiol. (London), 148, 554–569 (1959).Google Scholar
  2. 2.
    E.B. Verney, The antidiuretic hormone and the facotrs which determine its release, Proc. Roy. Soc., 135B, 26–106 (1947).Google Scholar
  3. 3.
    B. Andersson, Polydipsia caused by intrahypothalamic injection of hypertonic NaCl solution. Experientia, 8, 157–158 (1952).PubMedCrossRefGoogle Scholar
  4. 4.
    B. Andersson and S.M. McCann, A further study of polydipsia evoked by hypothalamic stimulation in the goat, Acta Physiol. Scand., 333-346 (1955).Google Scholar
  5. 5.
    E.M. Blass and A.N. Epstein, A lateral preoptic osmosensitive zone for thirst in the rat. J. Comp. Physiol. Psychol., 76, 378–394 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    J.W. Peck and D. Novin, Evidence that osmoreceptors mediating drinking in rabbits are in the lateral preoptic area. J. Comp. Physiol. Psychol., 74, 134–147 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Nicolaïdis, Réponses des unités osmosensibles hypothalamiques aux stimulations aqueuses et salines de la langue. C.R. Acad. Sci. Paris, 267, 2352–2355 (1968).Google Scholar
  8. 8.
    S. Nicolaïdis, Discriminatory responses of hypothalamic osmosensitive units to gustatory stimulation in cats. Olfaction and Taste, vol. 3, p. 569–573, Rockefeller Univ. Press, N.Y., (1969).Google Scholar
  9. 9.
    R.B. Malmo and W.J. Munol, Osmosensitive neurons in the rat’s preoptic area: medial-lateral comparison. J. Comp. Physiol. Psychol., 58, 161–175 (1975).CrossRefGoogle Scholar
  10. 10.
    G.I. Hatton, Nucleus circularis: is it an osmoreceptor in the brain? Brain Res. Bull., 1, 123–131 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Sessler and M.D. Salhi, Interaction of hypertonic NaCl and neural stimuli on lateral preoptic neurons. Neurosci. Lett., 26, 319–324 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    J.N. Hayward and J.D. Vincent, Osmosensitive single neurons in the hypothalamus of unanesthetized monkeys. J. Physiol. (London), 210, 947–992 (1970).Google Scholar
  13. 13.
    H. Legait, Etude caryométrique de la pars intermedia de l’hypophyse et de l’organe subfornical au cours des états d’hyper-activité de l’hypothalamus neurosécrétoire chez quelques mammifères, C.R. Soc.Biol. (Paris), 156, 1662 (1962).Google Scholar
  14. 14.
    M. Palkovits, L. Zaborszky and P. Magyar, Volume receptors in the diencephalon, Acta Morphol. Ac. Sci. Hung., 16, 391–401 (1968).Google Scholar
  15. 15.
    J.B. Simpson and A. Routtenberg, The subfornical organ and carbachol induced drinking, Brain Res., 45, 135–152 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    J.B. Simpson and A. Routtenberg, Subfornical organ: site of drinking elicitation by angiotensin II. Science, 181, 1172–1175 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Nicolaïdis, Mise en évidence de neurones barosensibles hypothalamiques antérieur et médian chez le chat, J. Physiol. (Paris), 62, 199–200 (1970).Google Scholar
  18. 18.
    S. Nicolaïdis and J.T. Fitzsimons, La dépendance de la prise d’eau induite par l’angiotensine II envers la fonction vaso-motrice cérébrale locale chez le rat. C.R. Acad.Sci., 281D, 1417–1420 (1975).Google Scholar
  19. 19.
    J. Buggy, A.E. Fisher, W.E. Hoffman, A.K. Johnson and M.I. Phillips, Ventricular obstruction: effect on drinking induced by intracranial injection of Angiotensin. Science, 190, 72–74 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    H. Duvernoy and J.G. Koritke, Die Gefässversorgung der Lamina Terminalis bei einigen Vögeln. Verh. Anat. Ges., 112, Suppl. 391–404 (1963).Google Scholar
  21. 21.
    R.R. Miselis, The efferent projections of the subfornical organ of the rat. A circumventricular organ within a neural network subversing water balance. Brain Res., 230, 1–23 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    S. Nicolaïdis, M. Le Poncin-Lafitte, J. Danguir, C. Grosdemouge and J.R. Rapin, Specific behaviors bound brain cartography of the glucose uptake rate. Eur. Neurol., 20, 180–182 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    A.K. Johnson, Periventricular structures of the lamina terminalis: their role in angiotensin induced thirst. In: Abstracts Evian Symposium, Body Fluid Homeostasis, p. 23(Ed. S. Nicolaïdis, J.T. Fitzsimons), (1983).Google Scholar
  24. 24.
    S. Nicolaïdis, Résponses unitaires dans les aires antérieures et médianes de l’hypothalamus antérieur associèes à des variations de pression artérielle et de volémie, C.R. Acad. Paris, 270, 839–842 (1970).Google Scholar
  25. 25.
    J.D. Vincent, E. Arnauld and B. Bioulac, Activity of osmosensitive single cells in the hypothalamus of the behaving monkey during drinking, Brain Res., 44, 371–384 (1972).PubMedCrossRefGoogle Scholar
  26. 26.
    E.T. Rolls, Neurophysiology og feeding, Dalhem Workshop on Appetite and Food Intake, Berlin 1975, T.6, Silverstone Ed., Dalhem Univ. Press, 21-42 (1976).Google Scholar
  27. 27.
    R.A. Nicoll and J.L. Barker, Excitation of supraoptic neurosecretory by Angiotensin II, Nature New Biol., 233, 172–174 (1971).PubMedCrossRefGoogle Scholar
  28. 28.
    M.J. Wayner, T. Ono and D. Nolley, Effects of angiotensin applied electrophoretically on lateral hypothalamic neurons, Pharmacol. Biochem. Behav, 1, 223–226 (1973).CrossRefGoogle Scholar
  29. 29.
    D. Felix and K. Akert, The effect of angiotensin II on neurons of the cat subfornical organ. Brain Res., 76, 350–353 (1974).PubMedCrossRefGoogle Scholar
  30. 30.
    M.I. Phillips and D. Felix, Specific angiotensin II receptive neurons in the cat subfornical organ, Brain Res., 109, 531–540 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Buranarugsa and J.I. Hubbard, The neuronal organization of the rat subfornical organ in vitro and a test of the osmo-and morphine-receptor hypotheses, J. Physiol. (London), 291, 101–116 (1979).Google Scholar
  32. 32.
    S. Nicolaïdis, S. Ishibashi, B. Gueguen, S.N. Thornton and R. de Beaurepaire, Iontophoretic investigation of identified SFO angiotensin responsive neurons firing in relation to blood pressure changes, Brain Res. Bull., 10(3), 357–363 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    S. Ishibashi, Y. Oomura, B. Gueguen and S. Nicolaïdis, Neuronal Responses in Subfornical Organ and other regions to Angiotensin II applied by various routes, Brain Res. Bull., 14(4) 44 (1985).CrossRefGoogle Scholar
  34. 34.
    S.N. Thornton, A.C. Jeulin, R. de Beaurepaire and S. Nicolaïdis, Iontophoretic application of Angiotensin II, Vasopressin and Oxytocin in the region of the anterior hypothalamus in the rat, Brain Res. Bull., 14(3) 45 (1985).CrossRefGoogle Scholar
  35. 35.
    S. Nicolaïdis and A.C. Jeulin, Converging projections of hydro-mineral imbalances, J. Physiol. (Paris), vol. 79, no 6, 406–415 (1984).Google Scholar
  36. 36.
    T. Hökfelt, J.M. Lunberg, M. Schultzberg, O. Johansson, A. Ljundahl and J. Rehfeld, Coexistence of peptides and putative transmitters in neurons, In: Costa E., Trabucchi M., (eds), Neural peptides and neuronal communication, Raven Press, N.Y., p. 23 (1980).Google Scholar
  37. 37.
    V. Chan-Palay, S. Palay, Coexistence of neuroactive substances in neurons, 432, Wiley and Sons publishers (1984).Google Scholar
  38. 38.
    A.N. Epstein, J.T. Fitzsimons and B.J. Rolls, Drinking caused by intracranial injection of angiotensin into the rat, J. Physiol. (London), 200, 98–100 (1969).Google Scholar
  39. 39.
    Y. Oomura, A. Ooyama, M. Sugimari, K. Yoneda and A. Simpson, Constant current device for drug application studies in the CNS, Physiol. Behav., 16, 799–802 (1976).PubMedCrossRefGoogle Scholar
  40. 40.
    D.R. Curtis and K. Koizumi, Chemical transmitter substances in the brain stem of the cat, J. Neurophysiol., 24, 80–90 (1961).PubMedGoogle Scholar
  41. 41.
    S. Nicolaïdis, Int. Conf. on “Neural Regulation of food and water intake”, N.Y., 1967, Ann. N.Y. Acad. Sci., 157, 1176–1203 (1969).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Nicolaïdis, Réflexe poto-hidrotique et étude de son mécanisme neurophysiologique, J. Physiol. (Paris), 63, 359–361 (1971).Google Scholar
  43. 43.
    M.L. Mangiapane and J.B. Simpson, Subfornical organ: site of pressor and drinking effects of angiotensin II. Soc. Neurosci. Abstr., 3, 351 (1977).Google Scholar
  44. 44.
    S. Ishibashi and S. Nicolaïdis, Hypertension induced by electrical stimulation of the subfornical organ (SFO), Brain Res. Bull., 6(2), 135–139 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    A.K. Johnson, Neurobiology of the periventricular tissue surrounding the anteroventral third ventricle AVEV and its role in behavior fluid balance and cardiovascular control. In: Circulation, Neurobiology and Behavior, Ed. Smith D.A., Galosy R.A., Weiss S.M. Elsevier Press, 277-295 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Anne Catherine Jeulin
    • 1
  • Stylianos Nicolaïdis
    • 1
  1. 1.Lab. de Neurobiologie des Régulations CNRSCollège de FranceParis C 05France

Personalised recommendations