Comparison of Angiotensin II And III Induced Dipsogenicity and Pressor Action

  • John W. Wright
  • Sandra L. Morseth
  • Margaret J. Sullivan
  • Joseph W. Harding
Part of the NATO ASI Series book series (NSSA, volume 105)


Angiotensin III (AIII) may play a greater role in body water balance and blood pressure control than previously envisioned. AIII is the predominant circulating peptide of the rat renin-angiotensin system,1 and promotes greater neural activity than angiotensin II (AII) when microiontophoretically delivered into the subfornical organ2. Intracranial injections of AII at doses of 50 pM and above induce greater drinking and pressor action than AIII in the rat,3,4 however, doses of AII and AIII below 25 pM induce equivalent dipsogenicity5. The present investigation further compared the magnitude of dipsogenic and pressor responses elicited by intracarotid and intracerebroventricular (icv) injections of AII and AIII.


Water Consumption Pressor Response Mean Arterial Blood Pressure Pressor Action Subfornical Organ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. F. Semple and J. J. Morton, Angiotensin II and angiotensin III in rat blood, Circ. Res. 38:122 (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    D. Felix and W. Schlegel, Angiotensin receptive neurons in the subfornical organ. Structure-activity relations, Brain Res. 149:107 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    J. T. Fitzsimons, The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat’s diencephalon, J. Physiol. 214: 295 (1971).PubMedGoogle Scholar
  4. 4.
    J. A. D. M. Tonnaer, V. M. Wiegant, W. De Jong and D. de Wied, Central effects of angiotensins on drinking and blood pressure: Structure-activity relationships, Brain Res. 236:417 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    J. W. Wright, S. L. Morseth, M. J. Mana, E. LaCrosse, E. P. Petersen and J. W. Harding, Central angiotensin III-induced dipsogenicity in rats and gerbils, Brain Res. 295: 121 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    J. R. Haywood, G. D. Fink, J. Buggy, M. I. Phillips and M. J. Brody, The area postrema plays no role in the pressor action of angiotensin in the rat, Am. J. Physiol. 239: H108 (1980).PubMedGoogle Scholar
  7. 7.
    K. E. Moe, M. L. Weiss and A. N. Epstein, Sodium appetite during captopril blockade of endogenous angiotensin II formation, Am. J. Physiol. (in press).Google Scholar
  8. 8.
    M. J. Peach, C. A. Sarstedt and E. D. Vaughan, Changes in cardiovascular and adrenal cortical responses to angiotensin III induced by sodium deprivation in the rat, Circ. Res. 38:II–117 (1976).CrossRefGoogle Scholar
  9. 9.
    W. S. Spielman, J. O. Davis and R. H. Freeman, Des-asp1–angiotensin II: Possible role in mediating the reninangiotensin response in the rat, Proc. Soc. Exp. Biol. Med. 151:177 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    M. I. Philips, Biological effects of angiotensin in the brain, in: “Enzymatic Release of Vasoactive Peptides,” F. Gross and G. Vogel, eds., Raven Press, New York (1980).Google Scholar
  11. 11.
    J. T. Fitzsimons and B. J. Simons, The effect on drinking in the rat of intravenous infusion of angiotensin, given alone or in combination with other stimuli of thirst, J. Physiol. 203:45 (1969).PubMedGoogle Scholar
  12. 12.
    A. N. Epstein and S. Hsiao, Angiotensin as dipsogen, in: “Control Mechanisms of Drinking,” G. Peters, J. T. Fitzsimons and L. Peters-Haefeli, eds., Springer-Verlag, Berlin (1975).Google Scholar
  13. 13.
    S. Hsiao, A. N. Epstein and J. S. Camardo, The dipsogenic potency of peripheral angiotensin II, Hormones Behav. 8:239 (1977).Google Scholar
  14. 14.
    J. B. Simpson, A. N. Epstein and J. S. Camardo, Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of the rat, J. comp. Physiol. Psychol. 92:581 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    A. K. Johnson and A. N. Epstein, The cerebral ventricles as the avenue for the dipsogenic action of intracranial angiotensin, Brain Res. 86:399 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    W. E. Hoffman and M. I. Phillips, Evidence for Sar1-Ala8 angiotensin crossing the blood cerebrospinal fluid barrier to antagonize central effects of angiotensin II, Brain Res. 109:541 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • John W. Wright
    • 1
  • Sandra L. Morseth
    • 1
  • Margaret J. Sullivan
    • 1
  • Joseph W. Harding
    • 1
  1. 1.Washington State UniversityPullmanUSA

Personalised recommendations