Advertisement

The Role of the Renal Renin-Angiotensin System in Thirst

  • Alan Kim Johnson
  • Marilyn M. Robinson
  • Johannes F. E. Mann
Part of the NATO ASI Series book series (NSSA, volume 105)

Abstract

Drinking is a homeostatic behavior that can correct body fluid deficits. Water deprivation produces dehydration of both the cellular and extracellular fluid compartments of the body. Cellular dehydration is caused by osmosis whenever the osmolality of the extracellular fluid is increased by solutes to which the cell membrane is not freely permeable. It is well established that this cellular dehydration is a potent stimulus to thirst and antidiuresis1. Likewise, Fitzsimons2 and others3,4 have shown that isotonic depletion of the extracellular fluid compartment by the subcutaneous or intraperitoneal injection of a hypertonic colloid solution such as polyethylene glycol (PEG) also causes drinking.

Keywords

Plasma Renin Activity Water Deprivation Extracellular Fluid Volume Cellular Dehydration Drinking Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gilman, The relations between blood osmotic pressure, fluid distribution and voluntary water intake, Am. J. Physiol. 120: 323 (1937).Google Scholar
  2. 2.
    J. T. Fitzsimons, Drinking by rats depleted of body fluid without increase in osmotic pressure, J. Physiol. (Lond) 159: 297 (1961).Google Scholar
  3. 3.
    E. M. Stricker, Extracellular fluid volume and thirst, Am. J. Physiol. 211: 232 (1966).PubMedGoogle Scholar
  4. 4.
    E. M. Stricker and J. E. Jalowiec, Restoration of intravascular fluid volume following acute hypovolemia in rats, Am. J. Phvsiol. 218: 191 (1970).Google Scholar
  5. 5.
    E. B. Verney, The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. 135B:25 (1947).CrossRefGoogle Scholar
  6. 6.
    T. N. Thrasher, C. J. Brown, L. C. Keil, and D.J. Ramsay, Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism, Am. J. Physiol. 238:R333 (1980).PubMedGoogle Scholar
  7. 7.
    T. N. Thrasher, R. G. Jones, L. C. Keil, C. J. Brown, and D. J. Ramsay, Drinking and vasopressin release during ventricular infusions of hypertonic solutions, Am. J. Physiol. 238:R340 (1980).PubMedGoogle Scholar
  8. 8.
    B. Andersson, Thirst and brain control of water balance, Am. Sci. 59: 408 (1971).PubMedGoogle Scholar
  9. 9.
    O. H. Gauer and J. P. Henry, Neurohormonal control of plasma volume, pp. 145–190. in: A. C. Guyton and A. W. Cowley (ed.) International Review of Physiology: Cardiovascular Physiology, Vol. 9, University Park Press, Baltimore (1976).Google Scholar
  10. 10.
    J. Sobocinska, Effect of cervical vagosympathectomy on osmotic reactivity of the thirst mechanism in dogs, Bull. Acad. Pol. Sci. 17: 265 (1969).Google Scholar
  11. 11.
    J. Sobocinska, Abolition of the effect of hypovolemia on the thirst threshold after cervical vagosympathectomy in dogs, Bull. Acad. Pol. Sci. 17: 341 (1969).Google Scholar
  12. 12.
    J. T. Fitzsimons, Hypovolaemic drinking and renin, J. Phvsiol. (Lond) 186: 130 (1966).Google Scholar
  13. 13.
    J. T. Fitzsimons, The role of the renal thirst factor in drinking induced by extracellular stimuli, J. Physiol. (Lond) 201: 349 (1969).Google Scholar
  14. 14.
    S. Kozlowski and E. Szczepanska-Sadowska, Mechanisms of hypovolaemic thirst and interactions between hypovolaemia hyperosmolality and the antiduretic system, pp. 25–35. in: G. Peters, J. T. Fitzsimons and L. Peters-Haefeli (ed.) Control Mechanisms of Drinking. Springer-Verlag, Berlin, Heidelberg and New York (1975).CrossRefGoogle Scholar
  15. 15.
    R. L. Hodge, R. D. Lowe, K. K. F. Ng, and J. R. Vane, Role of the vagus nerve in the control of the concentration of angiotensin II in the circulation, Nature 221: 177 (1969).PubMedCrossRefGoogle Scholar
  16. 16.
    J. L. Falk, M. Tang, and R. W. Bryant, Dipsogenic action of diazoxide: a pharmacologie analysis, J. Pharmacol. Exp. Ther. 190: 154 (1974).Google Scholar
  17. 17.
    J. M. Linazasoro, C. Jimenez Diaz, and H. Castro Mendoza, The kidney and thirst regulation, Bull. Inst. of Med. Res., Madrid 7: 53 (1954).Google Scholar
  18. 18.
    R. C. Nairn, G. M. C. Masson, and A. C. Corcoran, The production of serous effusions in nephrectomized animals by the administration of renal extracts and renin, J. Pathol. Bacteriol. 71: 151 (1956).CrossRefGoogle Scholar
  19. 19.
    A. W. Ascher and S. G. Anson, A vascular permeability factor of renal origin, Nature 198:1097 (1963).CrossRefGoogle Scholar
  20. 20.
    A. N. Epstein and S. Hsaio, Angiotensin as a dipsogen, pp. 108–116. in: G. Peters, J. T. Fitzsimons and L. Peters-Haefeli (ed.) Control Mechanisms of Drinking. Springer-Verlag, Berlin, Heidelberg and New York (1975).CrossRefGoogle Scholar
  21. 21.
    S. A. Hsaio, A. N. Epstein, and J. S. Camardo, The dipsogenic potency of peripheral angiotensin II, Horm. Behav. 8: 129 (1977).CrossRefGoogle Scholar
  22. 22.
    J. F. E. Mann, A. K. Johnson, and D. Ganten, Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin, Am. J. Physiol. 238:R372 (1980).PubMedGoogle Scholar
  23. 23.
    S. F. Abraham, R. M. Baker, E. H. Blaine, D. A. Denton, and M. J. McKinley, Water drinking induced in sheep by angiotensin — a physiological or pharmacological effect?, J. Comp. Physiol. Psychol. 88: 503 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    J. T. Fitzsimons, J. Kucharczk, and G. Richards, Systemic angiotensin-induced drinking in the dog: A physiological phenomenon, J. Phvsiol. (Lond) 276: 435 (1978).Google Scholar
  25. 25.
    N. C. Trippodo, R. E. McCaa, and A. C. Guyton, Effects of prolonged angiotensin II infusion on thirst, Am. J. Physiol, 230: 1063 (1976).PubMedGoogle Scholar
  26. 26.
    D. Denton, in: The Hunger for Salt An Anthropological, Physiological and Medical Anaysis, Springer-Verlag, Berlin, Heidelberg, New York (1982).Google Scholar
  27. 27.
    E. M. Stricker, The renin-angiotensin system and thirst: a reevaluation. II Drinking elicited in rats by caval ligation and isoproterenol, J. Comp. Physiol. Psvchol. 91: 1220 (1977).CrossRefGoogle Scholar
  28. 28.
    E. M. Stricker, The renin-angiotensin system and thirst: some unanswered questions. Fed. Proc. 37: 2704 (1978).PubMedGoogle Scholar
  29. 29.
    J. Atkinson, H.-P. Kaeserman, J. Lambelet, G. Peters and L. Peters-Haefeli, The role of circulating renin in drinking in response to isoprenaline, J. Physiol. (Lond) 291: 61 (1979).Google Scholar
  30. 30.
    E. M. Strieker, W. G. Bradshaw, and R. H. McDonald, Jr., The renin-angiotensin system and thirst: A reevaluation, Science 194: 1169 (1976).CrossRefGoogle Scholar
  31. 31.
    J. A. Hosutt, N. Rowland, and E. M. Strieker, Hypotension and thirst in rats after isoproterenol treatment, Physiol. & Behav., 21: 593 (1978).CrossRefGoogle Scholar
  32. 32.
    A. K. Johnson, J. F. E. Mann, W. Rascher, J. K. Johnson, and D. Ganten, Plasma angiotensin II concentrations and experimentally induced thirst, Am. J. Phvsiol. 240:R229 (1981).Google Scholar
  33. 33.
    E. F. Adolph, Do rats thrive when drinking sea water?, Am. J. Physiol. 140: 25 (1943).Google Scholar
  34. 34.
    J. T. Fitzsimons, Drinking caused by constriction of the inferior vena cava in the rat, Nature 204: 479 (1964).PubMedCrossRefGoogle Scholar
  35. 35.
    K. A. Houpt, and A. N. Epstein, The complete dependence of beta-adrenergic drinking on the renal dipsogen, Physiol. Behav. 7: 897 (1971).PubMedCrossRefGoogle Scholar
  36. 36.
    R. Rettig, D. Ganten, and A. K. Johnson, Isoproterenolinduced thirst: renal and extrarenal mechanisms, Am. J. Physiol. 241:R152 (1981).PubMedGoogle Scholar
  37. 37.
    D. T. Pals, F. D. Masucci, G. S. Denning, Jr., F. Sipos, and D. Fessier, Role of the pressor action of angiotensin II in experimental hypertension, Circ. Res. 29: 673 (1971).PubMedCrossRefGoogle Scholar
  38. 38.
    E. D. Vaughn, Jr., H. Gavras, J. H. Laragh, and M. N. Koss, Vascular permeability factor: dissociation from the angiotensin II induced pressor and drinking responses, Nature 242: 334 (1973).CrossRefGoogle Scholar
  39. 39.
    J. T. Fitzsimons, A. N. Epstein, and A. K. Johnson, Peptide antagonists of the renin-angiotensin system in the characterisation of receptors for angiotensin-induced drinking, Brain Res. 153: 319 (1978).PubMedCrossRefGoogle Scholar
  40. 40.
    R. L. Malvin, D. Mouw, and A. J. Vander, Angiotensin: physiological role in water-deprivationr-induced thirst of rats, Science 197: 171 (1977).PubMedCrossRefGoogle Scholar
  41. 41.
    B. J. Rolls and R. J. Wood, Role of angiotensin in thirst, Pharmac. Biochem. Behav. 6: 245 (1977).CrossRefGoogle Scholar
  42. 42.
    J. F. E. Mann, I. Phillips, R. Dietz, H. Haebara, and D. Ganten, Effects of central and peripheral angiotensin blockade in hypertensive rats, Am. J. Phvsiol. 234:H629 (1978).Google Scholar
  43. 43.
    J. F. E. Mann, A. K. Johnson, W. Rascher, J. Genest, and D. Ganten, Thirst in the rat after ligation of the inferior vena cava: role of angiotensin II, Pharmac. Biochem. Behav. 15: 337 (1981).CrossRefGoogle Scholar
  44. 44.
    D. Lehr, H. W. Goldman, and P. Casner, Renin-angiotensin role in thirst: paradoxical enhancement of drinking by angiotensin converting enzyme inhibitor, Science 182: 1031 (1973).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Sumny-Long and W. B. Severs, Angiotensin and thirst: studies with a converting enzyme inhibitor and a receptor antagonist, Life Sciences 15: 569 (1974).CrossRefGoogle Scholar
  46. 46.
    M. P. Printz, D. Ganten, T. Unger, and M. I. Phillips, Minireview: The brain renin angiotensin system, pp. 3–52. in: D. Ganten, M. Printz, M. I. Phillips and B. A. Scholkens (ed.) The Renin Angiotensin System in the Brain. Exp. Brain Res. Suppl. 4. Springer-Verlag, Berlin, Heidelberg and New York (1982).CrossRefGoogle Scholar
  47. 47.
    M. L. Cohen and K. D. Kurz, Angiotensin converting enzyme inhibition in tissues from spontaneously hypertensive rats after treatment with captopril or MK-421, J. Pharmacol Exp. Ther. 220: 63 (1982).Google Scholar
  48. 48.
    M. D. Evered and M. M. Robinson, The renin-angiotensin system in drinking and cardiovascular responses to isoprenaline in the rat, J. Phvsiol. 316: 357 (1981).Google Scholar
  49. 49.
    M. D. Evered and M. M. Robinson, Increased or decreased thirst caused by inhibition of angiotensi-converting enzyme in the rat, J. Phvsiol. 348: 573 (1984).Google Scholar
  50. 50.
    M. M. Robinson and M. D. Evered, Effects of systemic and intracranial inhibition of angiotensin-converting enzyme on isoproterenol-induced drinking in the rat, Eur. J. Pharmacol. 90: 343 (1983).PubMedCrossRefGoogle Scholar
  51. 51.
    J. T. Fitzsimons, The physiology of thirst and sodium appetite. Monographs of the Physiological Society No. 35, pp. 194. Cambridge Univ. Press., Cambridge (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Alan Kim Johnson
    • 1
  • Marilyn M. Robinson
    • 2
  • Johannes F. E. Mann
    • 3
  1. 1.Departments of Psychology and Pharmacology and the Cardiovascular CenterUniversity of IowaIowa CityUSA
  2. 2.Department of PhysiologyUniversity of Western OntarioLondonCanada
  3. 3.Department of MedicineUniversity of HeidelbergGermany

Personalised recommendations