Influence of Thyroid on Water and Food Intake

  • M. T. Rossi
  • L. Di Bella
Part of the NATO ASI Series book series (NSSA, volume 105)


Thirst is a subjective sensation (1) which is aroused by peripheral (2,3,4) or central receptors (5–18), is afferented by several vegetative nervous fibers (19–22), integrated by several nervous and neuroendocrine systems (5,10,13), controlled and modulated by various physiological conditions (23–30). In such a prominent function as the preservation of a constant body water amount and turnover, thirst has a predominant but not exclusive role. The intensity and kind of catabolism can repair the noxious effects of a mild dehydration (31, 32). It is moreover possible that even the initiation or termination of drinking are associated with miniature metabolic changes. We therefore investigated what functional deviations the thyroid suffers when various degrees of dehydration are experimentally brought about in the rat.


Water Intake Nerve Cell Body Zona Incerta Thyroid Epithelial Cell Mild Dehydration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.J. Rolls, “Thirst”, Cambridge Univ.Press (1982).Google Scholar
  2. 2.
    J.T. Fitzsimons and M.J. Moore, Short-latency, graded drinking in response to reduction in venous return in the dog, J. Physiol., 295:76 (1979).Google Scholar
  3. 3.
    J.T. Fitzsimons and M.J. Moore, Pulmo-atrial junctional receptors and the inhibition of drinking, J. Physiol., 307:74 (1980).Google Scholar
  4. 4.
    J.T. Fitzsimons and M.J. Moore, Drinking and antidiuresis in response to reduction in venous return in the dog: neural and endocrine mechanisms, J. Physiol., 308:403 (1980).PubMedGoogle Scholar
  5. 5.
    B. Andersson, Regulation of water intake, Physiol.Rev., 58:582 (1978).PubMedGoogle Scholar
  6. 6.
    E.M. Blass, Evidence for basal forebrain thirst osmoreceptors in rat, Brain Res., 82:69 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    B. Brown and S.P. Grossman, Evidence that nerve cell bodies in the zona incerta influence ingestive behavior, Brain Res.Bull., 5:593 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Buramarugsa and J.I. Hubbard, The neural organization of the rat subfornical organ in vitro and a test of the osmo-and morphino—receptor hypothesis, J. Physiol., 291:101 (1979).Google Scholar
  9. 9.
    P.C. Coburn and E.M. Stricker. Osmoregulatory thirst in rats after lateral preoptic lesions, J. Comp.Physiol.Psychol., 92:350 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    J.T. Fitzsimons, Thirst, Physiol. Rev., 52:468 (1972).PubMedGoogle Scholar
  11. 11.
    S.P. Grossman, D. Dacey, A.E. Halaris, A.E. Collier, T. and A. Routtenberg, Aphagia and adipsia after preferential destruction of nerve cell bodies in hypothalamus, Science, 202:537 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    F.J. Haberich, Osmoreception in the portal systern, Fed.Proc., 27:1137 (1968).PubMedGoogle Scholar
  13. 13.
    J.N. Hayward, Functional and morphologic aspects of hypothalamic neurons, Physiol.Rev., 57:574 (1977).PubMedGoogle Scholar
  14. 14.
    A.K. Johnson and J. Buggy, Periventricular preoptic-hypothalamus is vital for thirst and normal water economy, Amer.J. Physiol., 234:122 (1978).Google Scholar
  15. 15.
    S. Kozlowski and K. Drzewiecki, The role of osmoreception in portal circulation in control of water intake in dogs, Acta Physiol. Polonica, 24:325 (1973).Google Scholar
  16. 16.
    R.B. Malmo and W.J. Mundl, Osmosensitive neurons in the rat’s pre optic area: medial-lateral comparison, J. Comp.Physiol.Psychol., 88:161 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Oomura, T. Ono, H. Ooyama and M.J. Wayner, Glucose and osmosensitive neurones of the rat hypothalamus, Nature, 222:282 (1969).PubMedCrossRefGoogle Scholar
  18. 18.
    J.W. Peck and D. Novin, Evidence that osmoreceptors mediating drinking in rabbits are in the lateral preoptic area, J. Comp. Physiol.Psychol., 74:134 (1971).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Adachi, A. Niijima and H.L. Jacobs, An hepatic osmoreceptor mechanism in the rat: electrophysiological and behavioral studies, Amer.J. Physiol., 231:1043 (1976).PubMedGoogle Scholar
  20. 20.
    F.S. Kraly, Abdominal vagotomy inhibits osmotically induced drinking in the rat, J. Comp.Physiol.Psychol., 92:999 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    F.S. Kraly, J. Gibbs and G.P. Smith, Disordered drinking after abdominal vagotomy in rats, Nature, 258:226 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Sobocinska, Abolition of effect of hypovolemia on the thirst threshold after cervical vagosympathectomy in dogs, Bull.Acad. Polonaise d.Sciences, 17:341 (1969).Google Scholar
  23. 23.
    A.V. Wolf; “Thirst”, Charles C. Thomas, Springfield (1958).Google Scholar
  24. 24.
    M.J. Wayner, ed., “Thirst”, Pergamon Press, Oxford (1964).Google Scholar
  25. 25.
    E.M. Blass, R. Jobaris and W.G. Hall, Oropharyngeal control of drinking in rats, J. Comp.Physiol.Psychol., 90:909 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    A.N. Epstein, Oropharyngeal factors in feeding and drinking, Handbook Physiol., Vol.10, Sect.6, Ch.15, 197, Wash.D.C., Amer. Physiol.Soc. (1967).Google Scholar
  27. 27.
    N.E. Miller, R.J. Sampliner and P. Woodrow, Thirst reducing effects of water by stomach fistula versus water by mouth, measured by both a consummatory and instrumental response, J. Comp.Physiol. Psychol., 50:1 (1957).PubMedCrossRefGoogle Scholar
  28. 28.
    D.G. Mook, Oral and postingestional determinants of the intake of variuos solutions in rats with oesophageal fistulas, J. Comp. Physiol.Psychol., 56:645 (1963).CrossRefGoogle Scholar
  29. 29.
    S. Nicolaïdis, Early systemic responses to orogastric stimulation in the regulation of food and water balance: functional and electrophysiological data, Ann.N.Y. Acad.Sci., 151:1176 (1969).CrossRefGoogle Scholar
  30. 30.
    E.J. Towbin, Gastric distension as a factor in the satiation of thirst in esophagostomized dogs, Amer.J. Physiol., 8:71 (1949).Google Scholar
  31. 31.
    L. Di Bella, G. Scalera, G. Tarozzi and M.T. Rossi, Correlation between the food and the fluid intake, 7th Internat.Conf.on the Physiology of Food and Fluid Intake, IUPS, Warsaw, 1980.Google Scholar
  32. 32.
    L. Di Bella, M.T. Rossi and G. Scalera, A contribution to a correla tion between drinking and feeding behaviour, 8th Internat.Conf. on the Physiology of Food and Fluid Intake, IUPS, Melbourne, 1983.Google Scholar
  33. 33.
    C. Bomskov, Methodik der Hormonforschung, I B, 153, G.THieme, Leipzig (1937).Google Scholar
  34. 34.
    A. Melander, L.E. Ericson and F. Sundler, Sympathetic regulation of thyroid hormone secretion, Life Sci., 14:237 (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    A. Melander, F. Sundler and U. Westgren, Intratyroidal amines and the synthesis of thyroid hormones, Endocrinology, 83:193 (1973).CrossRefGoogle Scholar
  36. 36.
    A. Melander, R.E. Ericson, F. Sundler and S.H. Ingbar, Sympathetic in nervation of the mouse thyroid and its significance in thyroid hormone secretion, Endocrinology, 94:959 (1974).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Melander, Thyroid hormone secretion, Acta Physiol.Scand., Suppl. 370:31 (1971).Google Scholar
  38. 38.
    L.W. Tice and C.R. Creveling, Electron microscopic identification of adrenergic nerve endings on the thyroid epithelial cells, Endocrinology, 97:1123 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • M. T. Rossi
    • 1
  • L. Di Bella
    • 1
  1. 1.Cattedra di Fisiologia GeneraleIstituto di Fisiologia UmanaModenaItaly

Personalised recommendations