The Phylogeny and Ontogeny of Thirst

  • D. A. Denton
  • M. J. McKinley
  • P. Osborne
  • Eva Tarjan
  • R. S. Weisinger
Part of the NATO ASI Series book series (NSSA, volume 105)

Abstract

This subject is so wide that in the context of a symposium, the selection of a few aspects only is practical — rather than an encompassing review. One strategy of approach to analysis of phylogenetic emergence is to identify major mechanisms in the higher mammalian species, and then, where feasible in the light of data available, to trace the mechanisms down the phylogenetic tree. In so doing, attention can be focussed on characteristics of the econiche inhabited by a particular species, and thus the survival advantages which might accrue as a result of specific mechanisms of thirst.

Keywords

Permeability Migration Sucrose Urea Saccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gilman, The relation between blood osmotic pressure, fluid distribution and voluntary water intake. Am. J. Physiol. 120: 323 (1937).Google Scholar
  2. 2.
    E. B. Verney, The antidiuretic hormone and factors which determine its release, Proc. R. Soc. B135: 25 (1947).Google Scholar
  3. 3.
    B. Andersson, The effect of injections of hypertonic NaCl solutions into different parts of the hypothalamus of goats, Acta Physiol. Scand. 28: 188 (1953).PubMedCrossRefGoogle Scholar
  4. 4.
    B. Andersson, M. Jobin and K. Olsson, A study of thirst and other effects of an increased sodium concentration in the third brain ventricle, Acta Physiol. Scand. 69: 29 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    E. M. Blass and A. N. Epstein, A lateral preoptic osmosensitive zone for thirst in rat, J. Comp. and Physiol. Psychol., 76: 378 (1971).CrossRefGoogle Scholar
  6. 6.
    E. M. Blass, Evidence for basal forebrain thirst osmoreceptors in rat, Brain Res. 83: 69 (1974).CrossRefGoogle Scholar
  7. 7.
    B. Andersson, Regulation of water intake. Physiol. Rev. 58: 583 (1978).Google Scholar
  8. 8.
    M. J. McKinley, E. H. Blaine and D. A. Denton, Brain osmoreceptors, cerebrospinal fluid electrolyte composition and thirst, Brain Res. 70: 532 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    M. J. McKinley, D. A. Denton and R. S. Weisinger, Sensors for antidiuresis and thirst — Osmoreceptors or CSF sodium detectors? Brain Res. 141: 89 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    M. J. McKinley, D. A. Denton, L. G. Leksell, E. Tarjan and R. S. Weisinger, Evidence for cerebral sodium sensors involved in water drinking in sheep, Physiol. Behav. 25: 501 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    L. G. Leksell, M. Congiu, D. A. Denton, D. T. W. Fei, M. J. McKinley, E. Tarjan and R. S. Weisinger, Influence of mannitolinduced reduction in CSF sodium on nervous and endocrine mechanisms involved in control of fluid balance, Acta Physiol. Scand. 112: 33 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Buggy, W. E. Hoffman, M. I. Phillips, A. E. Fisher and A. K. Johnson, Osmosensitivity of rat third ventricle and interactions with angiotensin, Am. J. Physiol. 236: R75 (1979).PubMedGoogle Scholar
  13. 13.
    T. N. Thrasher, R. G. Jones, L. G. Keil, C. J. Brown and D. J. Ramsay, Drinking and vasopressin release during ventricular infusions of hypertonic solutions. Am. J. Physiol. 238: R340 (1980).PubMedGoogle Scholar
  14. 14.
    A. N. Epstein, Consensus, controversies and curiosities. Fed. Proc. 37: 2711 (1978).PubMedGoogle Scholar
  15. 15.
    J. T. Fitzsimons, The physiology of thirst and sodium appetite. Cambridge University Press (1979).Google Scholar
  16. 16.
    S. F. Abraham, J. P. Coghlan, D. A. Denton, J. G. McDougall, D. R. Mouw and B. A. Scoggins, Increased water drinking induced by sodium depletion in sheep. Quart. J. Exp. Physiol. 61: 185 (1976).PubMedGoogle Scholar
  17. 17.
    E. M. Stricker, Thirst, sodium appetite and complementary physiological contributions to the regulation of intravascular fluid volume, in.: “The neuropsychology of thirst — New findings and advances in concepts”, A. N. Epstein, H. R. Kissileff and E. Stellar (eds), V. H. Winston and Sons, Washington, (1973).Google Scholar
  18. 18.
    E. M. Stricker, Osmoregulation and volume regulation in rats; inhibition of hypovolaemic thirst by water, Am. J. Physiol., 217: 98 (1969).PubMedGoogle Scholar
  19. 19.
    E. M. Strieker, J. E. Jalowiec, Restoration of intravascular fluid volume following acute hypovolaemia in rats, Am. J. Physiol., 218: 191 (1970).Google Scholar
  20. 20.
    T. Hirano, Some factors regulating water intake by the eel (Anguilla Japonica), J. of Exp. Biol., 61: 737 (1974).Google Scholar
  21. 21.
    J. T. Fitzsimons and S. Kaufman, Cellular and extracellular dehydration and angiotensin as stimuli to drinking in the common iguana (Iguana iguana), J. Physiol., 265: 443 (1977).PubMedGoogle Scholar
  22. 22.
    T. J. Cade, Water and salt balance in granivorous birds, in: “Thirst; Proc. of the First International Symposium on thirst in the regulation of body water”, M. J. Wayner, ed., 237, Pergammon Press, Oxford, (1964).Google Scholar
  23. 23.
    J. T. Fitzsimons, M. Massi and S. M. Thornton, Permissive effect of cerebrospinal fluid sodium on drinking in response to cellular dehydration in the pigeon. Columba livia, J. Physiol, 315: 14P (1981).Google Scholar
  24. 24.
    D. J. Ramsay, B. Rolls and R. J. Wood, The relationship between elevated water intake and oedema associated with congestive cardiac failure in the dog. J. Physiol., 244: 303 (1975).PubMedGoogle Scholar
  25. 25.
    Ledingham, J. G., J. J. Morton, P. A. Phillips and E. J. Rolls, Effects of hypertonic saline and angiotensin (AII) on thirst in man. J. Physiol., 345: 114 (1983).Google Scholar
  26. 26.
    D. A. Denton, The Hunger for Salt, Springer Verlag, Heidelberg (1982).Google Scholar
  27. 27.
    T. Hirano, Y. Takei and H. Kobayashi, Effect of angiotensin on drinking in the eel and frog, in: “Volume and osmotic regulation, Alfred Benzon Symposium XI”, C.B. Jorgensen and E. Skadhauge eds., p123, Acad. Press, New York/London (1978).Google Scholar
  28. 28.
    H. Kobayashi, H. Uemura, M. Wada and Y. Takei, Ecological adaptation of angiotensin-induced thirst mechanisms in tetrapods. Gen. Comp. Endocrinol., 38: 93 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Takei, T. Hirano and H. Kobayashi, Angiotensin and water intake in the Japanese eel (Anguilla japonica), Gen. Comp. Endocrinol., 38: 466 (1979).Google Scholar
  30. 30.
    E. Tarjan, D. A. Denton, M. J. McKinley, J. F. Nelson and R. S. Weisinger, What makes wild rabbits drink? Symposium on Body Fluid Homeostasis, J. de Physiologie (Paris) Suppl., (In press).Google Scholar
  31. 31.
    B. J. Rolls and E. T. Rolls, Thirst, Cambridge University Press, (1982).Google Scholar
  32. 32.
    J. B. Wirth and A. N. Epstein, Ontogeny of thirst in the infant rat, Am. J. Physiol., 230: 188 (1976).PubMedGoogle Scholar
  33. 33.
    E. M. Blass, W. G. Hall and M. H. Teicher, The ontogeny of suckling and ingestive behaviour, in: “Progress in Psychobiology and Physiological Psychology, Vol.8, J. M. Sprauge and A. N. Epstein ed., pp 243, Acad. Press, New York (1979).Google Scholar
  34. 34.
    E. F. Adolph, Thirst and its inhibition in the stomach, Am. J. Physiol., 161: 374 (1950).PubMedGoogle Scholar
  35. 35.
    E. M. Stricker and G. M. Sterrit, Osmoregulation in the newly hatched domestic chick, Physiol. Behav., 2: 117 (1967).CrossRefGoogle Scholar
  36. 36.
    P. Hudson, J. P. Coghlan, J. Shine and H. D. Niall, Hybridization Histochemistry: Use of Recombinant DNA as a “Homing Probe” for tissue localization of specific mRNA population. Endocrinol. 108: 1 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • D. A. Denton
    • 1
  • M. J. McKinley
    • 1
  • P. Osborne
    • 1
  • Eva Tarjan
    • 1
  • R. S. Weisinger
    • 1
  1. 1.Howard Florey Institute of Experimental Physiology and MedicineUniversity of MelbourneParkvilleAustralia

Personalised recommendations